1.- Sea $\alpha \in S_8$ dada por:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 8 & 3 & 6 & 2 & 4 & 1 & 5 \end{pmatrix}.$$

Calcula el signo de α .

2.- Sea $\sigma \in S_{10}$ dada por

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 10 & 9 & 12 & 6 & 3 & 4 & 7 & 5 & 2 \end{pmatrix}.$$

Encuentra la factorización completa de σ^3 .

- [Sugerencia: calcula primero la factorización completa de σ.]
- 3.- Sea $\alpha \in S_n$ un r-ciclo. Para cada $1 \le k \le r$, ¿es σ^k un r-ciclo?
- 4.- Si $1 \le r \le n$, prueba que hay $\frac{1}{r}[n(n-1)\dots(n-r+1)]$ r-ciclos en S_n .
 - [Sugerancia: un r-ciclo puede escribirse de r formas en notación de ciclo.]
- 5.- Si $\sigma \in S_n$ es un r-ciclo, prueba que r es el mínimo entero positivo tal que $\sigma^r = (1)$.
- 6.- Sea $\sigma \in S_n$ un r-ciclo. Prueba que σ es par si y solo si r es impar.
- 7.- Diremos que una **adyacencia** es una trasposición en S_n de la forma $(i \ i+1)$ con $1 \le i < n$. Prueba que toda permutación en S_n es producto de adyacencias.
 - [Sugerencia: primero haz el caso de una trasposición. Después un ciclo, y por último una permutación en general.]
- 8.- Si $\alpha \in S_n$, prueba que $\operatorname{sgn}(\alpha) = \operatorname{sgn}(\alpha^{-1})$.
 - [Sugerencia: usa que el signo es multiplicativo. ¿Cuál es el signo de $\alpha\alpha^{-1}$?]
- 9.- Sea $\alpha \in S_n$. Prueba que para cada $i \in \{1, ..., n\}$, α mueve a i si y solo si α^{-1} mueve a i.
 - [Sugerencia: procede por contrapositiva.]
- 10.- Sean $\alpha \in S_n$, y $j \in \text{Sop}(\alpha)$. Prueba que $\alpha(j) \in \text{Sop}(\alpha)$.
 - [Sugerencia: procede por contradicción.]
- 11.- Sean $\alpha, \beta \in S_n$ permutaciones ajenas tales que $\alpha\beta = (1)$. Prueba que $\alpha = (1)$ y $\beta = (1)$.
- 12.- Da un ejemplo de dos permutaciones $\alpha, \beta \in S_n$ tales que $(\alpha\beta)^2 \neq \alpha^2\beta^2$.
 - [Sugerencia: intenta con trasposiciones.]
- 13.- Sean $\alpha, \beta \in S_n$ permutaciones que conmutan. Prueba que para toda $k \in \mathbb{Z}^+$, $(\alpha \beta)^k = \alpha^k \beta^k$.
 - [Sugerencia: procede por inducción. Primero muestra que para toda $k \in \mathbb{Z}^+$, $\alpha^k \beta = \beta \alpha^k$.]
- 14.- Sea $n \geq 3$. Si $\alpha \in S_n$ conmuta con toda $\beta \in S_n$, entonces $\alpha = (1)$.
 - [Sugerencia: $si \ \alpha \neq 1$, existe i tal que $\alpha(i) = j \ con \ i \neq j$. Usando que α conmuta con $(i \ j)$, intenta calcular $\alpha(j)$.]