Lista de problemas 2: Grupos

- 1.- Sean G un grupo, y $g \in G$ tal que $g^2 = g$. Prueba que $g = e_G$.
- 2.- Sean G un grupo, y $a.b \in G$. Prueba que $(ab)^{-1} = b^{-1}a^{-1}$.
 - [Sugerencia: usa la unicidad de los inversos.]
- 3.- Sea G un grupo tal que para todo $x \in G$, $x^2 = e_G$. Prueba que G es abeliano.
 - [Sugerencia: para $a, b \in G$, prueba que $(ab)^2 = ab = a^2b^2$.]
- 4.- Sea $a \in G$, con |a| = n. Prueba que $a^m = 1$ si y solo si n|m.
 - [Sugerencia: usa el algoritmo de la división.]
- 5.- Sean G un grupo , y $p,q\in\mathbb{Z}^+$. Supón que $g\in G$ tiene orden pq. Prueba que g^p tiene orden q.
- 6.- Considera en el grupo $GL_2(\mathbb{R})$ (las matrices 2×2 invertibles con entradas reales), las matrices

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \text{ y } B = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}.$$

Prueba que A y B tienen orden finito, y AB tiene orden infinito.

- [Sugerencia: calcula AB y sus primeras potencias para encontrar un patrón. Usa inducción.]
- 7.- Sea $\alpha \in S_n$. Supón que $\alpha = \beta_1 \beta_2 \dots \beta_t$, donde β_i es un r_i -ciclo, y todos estos ciclos son disjuntos por pares. Prueba que $|\alpha| = m.c.m.(r_1, r_2, \dots, r_t)$.
 - [Sugerencia: usa el problema 3 de esta lista, y el problema 11 de la lista 1.]
- 8.- Sean $f: G \longrightarrow H$ y $g: H \longrightarrow K$ homomorfismos de grupos. Prueba que $g \circ f$ es un homomorfismo.
- 9.- Sea G un grupo, y considera la función $f: G \longrightarrow G$ dada por $f(x) = x^{-1}$. Prueba que G es abeliano si y solo si f es un homomorfismo.
 - [Sugerencia: usa el problema 2 de esta lista.]
- 10.- Sea $f: G \longrightarrow H$ un isomorfismo de grupos. Prueba que $f^{-1}: H \longrightarrow G$ es un homomorfismo de grupos. Concluye que f^{-1} es un isomorfismo.
 - [Sugerencia: para probar que $f^{-1}(xy) = f^{-1}(x)f^{-1}(y)$, evalua ambos lados en f y usa que f es inyectivo.]
- 11.- Sea $f: G \longrightarrow H$ un isomorfismo de grupos. Prueba que para todo $x \in G$, |x| = |f(x)|.
 - [Sugerencia: usa que f es inyectivo.]
- 12.- Sea $f: G \longrightarrow H$ un isomorfismo de grupos. Prueba que si G es abeliano, entonces H es abeliano.
 - [Sugerencia: usa que f es suprayectivo.]
- 13.- Sea $f:G\longrightarrow H$ un isomorfismo de grupos. Prueba que si G es cíclico, entonces H es cíclico.
 - [Sugerencia: $si\ G = \langle a \rangle$, prueba que $H = \langle f(a) \rangle$.]
- 14.- Sea G un grupo cíclico de orden infinito. Prueba que $G \cong \mathbb{Z}$.
 - [Sugerencia: $si\ G = \langle a \rangle$, define $f: \mathbb{Z} \longrightarrow G$ como $f(n) = a^n$.]
- 15.-Sean X, Y conjuntos, y $f: X \longrightarrow Y$ una biyección. Prueba que $S_X \cong S_Y$.

- [Sugerencia: define $\varphi: S_X \longrightarrow S_Y$ como $\varphi(\sigma) = f \circ \sigma \circ f^{-1}$.]
- 16.- Sea $H \leq G$, con [G:H]=2. Prueba que para todo $x \in G$, $x^2 \in H$.
 - [Sugerencia: analiza 2 casos, $x \in H$ y $x \notin H$.]
- 17.- Da un ejemplo de subgrupos $H, K \leq G$ tales que $H \cup K$ no es subgrupo de G.
- 18.- Sean $H,K \leq G.$ Prueba que $H \cup K \leq G$ si y solo si $H \subset K$ o $K \subset H.$
 - [Sugerencia: $si\ H \not\subset K$, existe $h \in H \setminus K$. Nota que para cada $k \in K$, $hk \in H \cup K$.]
- 19.- Sea G un grupo de orden finito, y considera la cadena de subgrupos $H \leq K \leq G$. Prueba que [G:H]=[G:K][K:H].
- 20.- Sean $H, K \leq G$, tales que |H| y |K| son coprimos. Prueba que $H \cap K = \{e_G\}$.
 - [Sugerencia: usa el teorema de Lagrange. Nota que $H \cap K \leq H$ y $H \cap K \leq K$.]
- 21.- Sea G un grupo de orden 4. Prueba que G es cíclico, o, para todo $x \in G$ $x^2 = e_G$.