Lista de problemas 3: Los teoremas de isomorfismo

- 1.- Sea $f: G \longrightarrow H$ un homomorfismo de grupos. Prueba que f es inyectivo si y solo si $Ker(f) = \{e_G\}$.
 - [Sugerencia: $si\ f(x) = f(y)$, ¿cuánto es $f(xy^{-1})$?]
- 2.- Sea $H \leq G$. Prueba que para todo $g \in G$, $gHg^{-1} \leq G$.
- 3.- Prueba la siguiente ley de conmutatividad parcial para subgrupos normales: sea $N \subseteq G$. Para todos $g \in G$ y $n \in N$, existe $n' \in N$ tal que gn = n'g.
 - [Sugerencia: nota que gn = n'g si y solo si $gng^{-1} = n'$.]
- 4.- Sea G un grupo, y $\{N_i\}_{i\in I}$ una familia de subgrupos normales de G. Prueba que $\bigcap_{i\in I}N_i \leq G$.
- 5.- Sea $N \leq G$. Prueba que $N \leq G$ si y solo si para toda $g \in G$, $gNg^{-1} \subseteq N$.
 - [Sugerencia: para probar que $N \subseteq gNg^{-1}$, muestra primero que $g^{-1}Ng \subseteq N$.]
- 6.- Sea $N \leq G$. Prueba que $N \subseteq G$ si y solo si para toda $g \in G$, gN = Ng.
- 7.- Sea $H \leq G$, con [G:H] = 2. Prueba que $H \leq G$.
 - [Sugerencia: usa el problema 6.]
- 8.- Sea $H \leq G$. Prueba que HH = H.
- 9.- Sea $H \leq G$. Supongamos que para todos $x, y \in G$, se cumple que xHyH = xyH. Prueba que $H \leq G$.
 - [Sugerencia: usa el problema 5.]
- 10.- Sean $H, K \leq G$. Prueba que $HK \leq G$ si y solo si HK = KH.
 - [Sugerencia: $si\ HK \leq G$, HK es cerrado bajo inversos.]
- 11.- Sea G un grupo. Prueba que $G \subseteq G$ y $G/G \cong \{1\}$.
- 12.- Sea Gun grupo. Prueba que $\{e_G\} \unlhd G$ y $G/\{e_G\} \cong G.$
- 13.- Sea G un grupo cíclico de orden n. Prueba que $G \cong \mathbb{Z}_n$.
 - [Sugerencia: usa el primer teorema de isomorfismo.]
- 14.- Sean G un grupo de orden finito, $H \leq G$ y $K \leq G$. Prueba que $|HK| \cdot |H \cap K| = |H||K|$.
 - [Sugerencia: usa el segundo teorema de isomorfismo.]
- 15.- Sea G un grupo. Consideremos la función $\mu: G \times G \longrightarrow G$ dada por $\mu(g,h) = gh$. Prueba que G es abeliano si y solo si μ es un homomorfismo.
 - [Sugerencia: para $g, h \in G$, calcula $\mu(h, e_G)\mu(e_G, g)$.]
- 16.- Da un ejemplo de $m, n \in \mathbb{Z}^+$ para los cuáles $\mathbb{Z}_m \times \mathbb{Z}_n \not\cong \mathbb{Z}_{mn}$.
- 17.- Sean $m, n \in \mathbb{Z}^+$ coprimos. Prueba que $\mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{mn}$.
 - [Sugerencia: define $f: \mathbb{Z} \longrightarrow \mathbb{Z}_m \times \mathbb{Z}_n$ dada por $f(a) = ([a]_m, [a]_n)$.]