Lista de problemas 4: Acciones de grupos y los teoremas de Sylow

- 1.- Sean G un grupo, y $a, b \in G$. Prueba que ab y ba tienen el mismo orden.
 - [Sugerencia: recuerda que las conjugaciones son isomorfismos, y los isomorfismos preservan orden.]
- 2.- Prueba que G es un grupo abeliano simple si y solo si es finito y de orden primo.
 - [Sugerencia: muestra primero que G es cíclico.]
- 3.- Sea G un grupo. Supón que G/Z(G) es cíclico. Prueba que G es abeliano.
 - [Sugerencia: supón que G no es abeliano. Si x es tal que xZ(G) genera a G/Z(G), prueba que $x \in Z(G)$.]
- 4.- Sea $\alpha \in S_n$ un *n*-ciclo. Prueba que $C_{S_n}(\alpha) = \langle \alpha \rangle$.
 - [Sugerencia: usa que $[G:C_G(x)]=|x^G|$.]
- 5.- Prueba que A_n está generado por los 3-ciclos de S_n .
 - [Sugerencia: prueba que un producto de dos trasposiciones es un producto de 3 ciclos. Haz 2 casos dependiendo de si las trasposiciones son ajenas.]
- 6.- Prueba que A_5 no tiene subgrupos de orden 30.
 - ullet [Sugerencia: recuerda que si [G:H]=2, H es normal en G.]
- 7.- Sea $n \geq 5$. Prueba que los únicos subgrupos normales de S_n son $\{(1)\}$, $A_n y S_n$.
 - [Sugerencia: $si \ N \subseteq S_n, \ N \cap A_n \subseteq A_n.$]
- 8.- Sean 2 < r < n. Prueba que S_n no tiene subgrupos de índice r.
 - [Sugerencia: supón que $H \leq S_n$ con $[S_n : H] = r$. Pon a actuar a S_n en las clases laterales de H.]
- 9.- Sea X un G-conjunto. Supón que $x, y \in X$ son dos elementos en la misma órbita. Prueba que G_x y G_y son conjugados.
 - [Sugerencia: $si \ y = g \cdot x$, muestra que $G_y = gG_xg^{-1}$.]
- 10.- Se quiere pintar una bandera con tres franjas verticales. Cada franja puede ser verde, blanca o roja. Considera que rotar una bandera 180 grados resulta en la misma bandera. Por ejemplo, la bandera |V|B|R| es la misma que la bandera |R|B|V|. ¿Cuántas banderas diferentes podemos hacer?
 - [Sugerencia: usa una acción de \mathbb{Z}_2 (rotación de 180) y el lema de Burnside.]
- 11.- Se tiene un tablero 4×4 , y se quiere pintar cada cuadrado de blanco o negro. Si podemos obtener una coloración a partir de una rotación de otra, las consideraremos iguales. ¿Cuántas coloraciones distintas hay?
 - [Sugerencia: usa una acción de \mathbb{Z}_4 (dada por las rotaciones del tablero) y el lema de Burnside.]
- 12.- Sea G un grupo abeliano de orden n, y d un divisor de n. Prueba que G tiene un subgrupo de orden d.
 - [Sugerencia: usa el teorema de Cauchy y el teorema de la correspondencia.]
- 13.- Sean G un grupo de orden finito, Q un p-subgrupo normal de G, y P un p-subgrupo de Sylow de G. Prueba que $Q \leq G$.
 - [Sugerencia: todos los p-subgrupos de Sylow son conjugados.]
- 14.- Sea G un grupo de orden 15. ¿Cuántos 3-subgrupos de Sylow tiene G?
- 15.- Sea G un grupo de orden 15. ¿Cuántos 5-subgrupos de Sylow tiene G?
- 16.- Sea G un grupo de orden 90. Si N es un 5-subgrupo de Sylow de G que no es normal, prueba que N tiene 6 conjugados.