




| Demostraciones con cuantificadores                                                                                                                |                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Demostrar que es cierto                                                                                                                           | Demostrar que es talso                                                                                                                                                                                                                                                     |
| Tomar un x arbitrario y<br>verificar que cumple P(x)                                                                                              | Dar un contra ejemplo, i.e.<br>exhibir un x que no<br>cumpla P(x)                                                                                                                                                                                                          |
| Dar un ojemplo, c.i.<br>exhibir un x fal que<br>P(x) se cumple.                                                                                   | Demostrar que P(x) es<br>falso para toda x.                                                                                                                                                                                                                                |
| Dar un ejemplo, e.i.  exhibir un x tal que  P(x) se comple y  demostrar unicidal, e.i.  demostrar que si otro x'  com ple P(x') entonces  x = x'. | Demostrar que P(x) es falsa para toda x, o bien, exhibir dos clementos diferentes x y x' tales que P(x) y P(x') son ciertos.                                                                                                                                               |
|                                                                                                                                                   | Demostrar que es cierto  Tomar un x arbitrario y verificar que cumple P(x)  Dar un ejemplo, e.i. exhibir un x tal que P(x) se cumple.  Dar un ejemplo, e.i. exhibir un x tal que P(x) se cumple y demostrar unicidal, e.i. demostrar que si otro x' cum ple P(x') entonces |

Ejemplo (fx)?(x)

Demostración constructiva.

Ej. Existe un primo que es par.

Dem: El número 2 es primo y es par.

Gi. Existe un primo que es impar.

Dem: El número 7 es primo y es impar

# Ejemplo (31x)(P(x))

Ej. Todo nomero real no cero tiene un unico inverso multiplicativo.

Dem: Sea x+0 on número real.

Roy le tante y es on inverse multiplicative de x.

Unicidad) Sean y, z moltiplicativos inversos de x. Entonus

$$xy=1$$
 y  $xz=1$ , as  $y=2$   
 $xy=xz=0$   
 $x(y-z)=0$ 

(y-z)=0 Como x+0, y-z=0. Así que y=z.



# Ejemplo (Yx) [P(x))

Pava cualesquiera números vacionales x e y x+y es racional.

Rem: Sean xiye Q. Entones existen parise I tales que 7 = 0,5 = 0 y x= 2 ) y= 5. Wego

$$\frac{x+y}{2} = \frac{\frac{p}{4} + \frac{x}{5}}{2} = \frac{ps+19}{2}$$

Como pstrgez, 295EZ y 295FQ tenemos que x+y es racional.



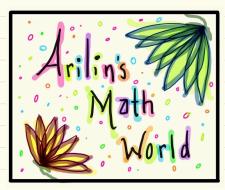
# Demostrar que los siguientes enunciados son falsos.



### Enunciado 1. Todos los números son pares.

Este enunciado es falso pues el 3 es un número que no es par.

# Enunciado 2. El único entero mayor que 5 es el 7.


Este enunciado es falso pues el número 6 es un entero mayor que 5 y diferente a 7.

## Enunciado 3. Existe un número natural negativo.

Super falso.

Por definición todos los naturales son mayores que o y por lo tanto no son negativos.

- 👍 Imágenes creadas con Bitmoji.
- 4 Notas hechas por Arilín Haro, de Arilin's Math World.
- Notas basadas en el video de Luis Jorge Sánchez Saldaña, puedes visitar su canal https://www.youtube.com/channel/UCmF6r\_udwPhwlkyAocDykWw
- Recuerda visitar:
  - \* mi canal Arilin's Math y
  - \* mi grupo de Facebook Arilin's Math World.





