

Notas de apoyo para Teoría de Gráficas I Gráficas

Axel Leonardo Castillo Vallejo

Bajo la supervisión de: Leonardo Ignacio Martínez Sandoval

1. Gráficas

1.1. Definiciones

1.1.1. Gráfica, vértice y arista

Una **gráfica (simple)** es una pareja ordenada, digamos (V, E), donde V es un conjunto finito y no vacío de elementos llamados **vértices** y E es un conjunto de parejas no ordenadas únicas de elementos de V llamadas **aristas**.

Nota. Para esta guía consideramos gráficas simples:

- 1. Dados dos vértices x y y en una gráfica, existe a lo más una arista entre x y y. Es decir, no trabajaremos con **multígráficas**.
- 2. Dado un vértice x en una gráfica, la pareja no ordenada (x, x) no es una arista de la gráfica. Es decir, no trabajaremos con **bucles** o **lazos**.
- 3. Dada (u, v) una arista de una gráfica, entonces (u, v) = (v, u). Es decir, no trabajaremos con gráficas dirigidas.

Ejemplo. Las siguientes son gráficas:

(a)
$$G_a = (V_a, E_a)$$
 con $V_a = \{v_1, v_2, v_3, v_4\}$ y $E_a = \{(v_1, v_2), (v_3, v_4), (v_4, v_2)\}$

(b)
$$G_b = (V_b, E_b)$$
 con $V_b = \{rojo\}$ y $E_b = \emptyset$

(c)
$$G_c = (V_c, E_c)$$
 con $V_c = \{1, 2, 3, 4, 5, 6\}$ y $E_c = \{(1, 2), (2, 3), (3, 1), (4, 5)\}$

1.1.2. Adyacencia, incidencia, V(G) y E(G)

Dados dos vértices de una gráfica G, digamos u y v

- 1. u y v son adyacentes en G si (u, v) es una arista de G. En tal caso, cada uno de estos vértices es incidente a dicha arista.
- 2. Denotaremos por V(G) a su conjunto de vértices y por E(G) a su conjunto de aristas.

Nota. Dada una arista (u, v) en una gráfica, omitiremos la notación conjuntista y escribiremos simplemente uv. Recordar que uv = vu para esta guia.

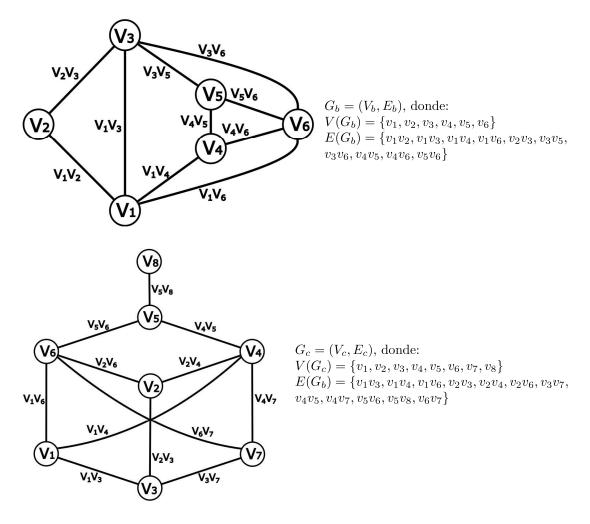
1.1.3. Representación de una gráfica en el plano

Una gráfica G puede ser representada en el plano de la siguiente manera:

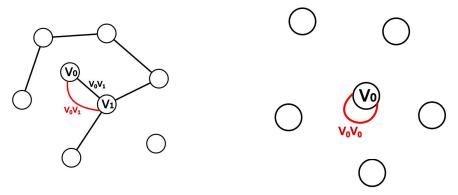
- 1. A cada vértice de G se le asocia un punto en el plano.
- 2. A cada arista de G, digamos uv, se le representa con un segmento continuo entre los puntos que representan a los vértices u y v

Ejemplo. Consideremos las siguientes gráficas:

$$\begin{split} G_a &= (V_a, E_a), \text{ donde:} \\ V(G_a) &= \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\} \\ E(G_a) &= \{v_1v_3, v_1v_6, v_1v_7, v_2v_6, v_2v_7, v_3v_6, v_3v_7, v_3v_8, v_5v_6, v_6v_8\} \end{split}$$



Ejemplo. Por la nota en 2.1.1 los siguiente dibujos no representan alguna gráfica para los fines de esta guia.



Nota. Usualmente dibujaremos una gráfica sin especificar el nombre de cada arista.

1.1.4. Matriz de adyacencia

Sea G una gráfica con $V(G) = \{v_1, v_2, v_3, \dots, v_n\}$, se define a la **matriz de adyacencias de G** como la matriz tal que

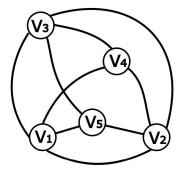
$$a_{ij} = \begin{cases} 1 & \text{si } v_1 v_2 \in E(G) \\ 0 & \text{si } v_1 v_2 \notin E(G) \end{cases}$$

la denotaremos como $MA[G] = (a_{ij})_{n \times n}$

Observación. Si G es una gráfica y MA[G] su matriz de adyacencias, entonces:

- 1. $a_{ii} = 0 \ \forall i \in \{1, \dots, n\}$
- 2. $a_{ij} = a_{ji} \ \forall i, j \in \{1, \dots, n\}$
- 3. $\forall k \in \{1, \dots, n\} \sum_{i=1}^{n} a_{ik} = \sum_{i=1}^{n} a_{kj}$

Ejemplo. Consideremos la siguiente gráfica y su matriz de adyacencias:



$$MA[G] = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \end{pmatrix}$$

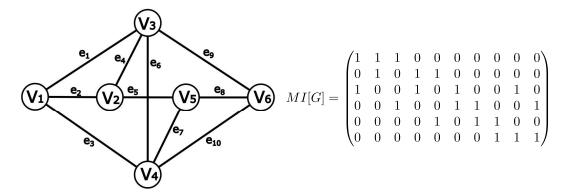
1.1.5. Matriz de incidencias

Sea G una gráfica con $V(G) = \{v_1, v_2, v_3, \dots, v_n\}$ y $E(G) = \{e_1, e_2, e_3, \dots, e_n\}$, se define a la **matriz de incidencias de G** como la matriz tal que

$$a_{ij} = \begin{cases} 1 & \text{si } v_i \text{ incide en } e_j \\ 0 & \text{si } v_i \text{ no incide en } e_j \end{cases}$$

la denotaremos como $MI[G] = (a_{ij})_{n \times n}$

Ejemplo. Consideremos la siguiente gráfica y su matriz de incidencias:

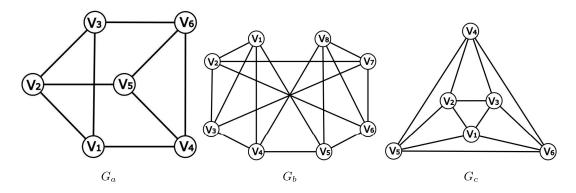


1.1.6. Orden y tamaño

Dada una gráfica G:

- 1. El **orden de** G es el número de vértices que tiene la gráfica, es decir, |V(G)|
- 2. El tamaño de G es el número de aristas que tiene una gráfica, es decir, |E(G)|

Ejemplo. Consideremos las siguientes gráficas:



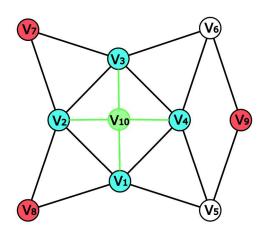
- (a) El orden de G_a es $|V(G_a)| = |\{v_1, v_2, v_3, v_4, v_5, v_6\}| = 6$ El tamaño de G_a es $|E(G_a)| = |\{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_5, v_3v_6, v_4v_5, v_4v_6, v_5v_6\}| = 9$
- (b) El orden de G_b es $|V(G_b)| = 8$ El tamaño de G_b es $|E(G_b)| = 16$
- (c) El orden de G_c es $|V(G_c)| = 6$ El tamaño de G_c es $|E(G_c)| = 12$

1.1.7. Vecindad, grado, $E_G(v)$, grado mínimo y máximo

Dada una gráfica G y un vértice v en G:

- 1. La **vecindad de** v **en** G, denotada por $N_G(v)$, es el conjunto $\{x \in V(G) : xv \in E(G)\}$. A los elementos en $N_G(v)$ se les llama los **vecinos de** v **en** G.
- 2. Al número $|N_G(v)|$ se le llama **grado de** v **en** G y se denota por $\delta_G(v)$.
- 3. $E_G(v)$ es el conjunto de aristas en las que incide v.
- 4. El **grado mínimo de** G, denotado por $\delta(G)$ se define como $min\{\delta_G(x): x \in V(G)\}$.
- 5. El grado máximo de G, denotado por $\Delta(G)$ se define como $max\{\delta_G(x):x\in V(G)\}$.

Ejemplo. Consideremos la siguiente gráfica:



Para el vértice v_{10} en G tenemos que sus vecinos son $N_G(v_{10}) = \{v_1, v_2, v_3, v_4\}$. Entonces el grado de v_{10} en G es $\delta_G(v_{10}) = |N_G(v_{10})| = 4$. Además, $E_G(v_{10}) = \{v_{10}v_1, v_{10}v_2, v_{10}v_3, v_{10}v_4\}$

El grado mínimo de G es: $\delta(G) = \min\{\delta_G(v) : v \in V(G)\} = \min\{\delta_G(v_1), \delta_G(v_2), \dots, \delta_G(v_{10})\} = \min\{5, 5, 5, 5, 3, 3, 2, 2, 2, 4\} = \min\{5, 3, 2, 4\} = 2$

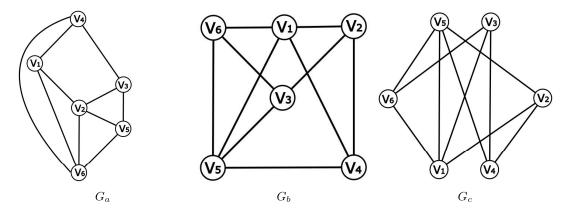
El grado máximo de G es: $\Delta(G) = \max\{\delta_G(v) : v \in V(G)\} = \max\{5,3,2,4\} = 5$

1.1.8. Isomorfismo de gráficas

Dadas dos gráficas, digamos G y H, decimos que G y H son isomorfas, denotado por $G \cong H$, si existe una función biyectiva $f: V(G) \to V(H)$ que preserva adyacencias, es decir, para cualquier par de vértices u y v de G, uv es una arista en G si y sólo si f(u)f(v) es una arista en H.

A la función f se le conoce como **isomorfismo entre** G y H .

Ejemplo. Consideremos las siguientes gráficas:



- (a) La función $f_b: V(G_a) \to V(G_b)$ dada por: $f_a(v_1) = v_6$, $f_a(v_2) = v_1$, $f_a(v_3) = v_2$, $f_a(v_4) = v_3$, $f_a(v_5) = v_4$ y $f_a(v_6) = v_5$. La función es biyectiva y se puede comprobar que preserva adyacencias. Por lo tanto, G_a y G_b son isomorfas, $G_a \cong G_b$.
- (b) La función $f_c: V(G_a) \to V(G_c)$ dada por: $f_a(v_1) = v_6$, $f_a(v_2) = v_5$, $f_a(v_3) = v_4$, $f_a(v_4) = v_3$, $f_a(v_5) = v_2$ y $f_a(v_6) = v_1$, es un isomorfismo entre G_a y G_c . Por lo tanto $G_a \cong G_c$.

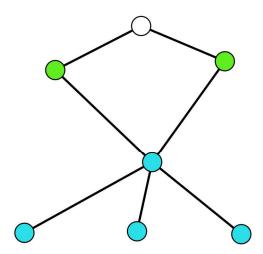
1.2. Resultados importantes

- 1. Lema. En toda gráfica con al menos dos vértices, hay al menos dos vértices con el mismo grado.
- 2. Teorema (Primer teorema de gráficas). En cualquier gráfica se satisface que

$$\sum_{x \in V(G)} \delta_G(x) = 2|E(G)|$$

3. Corolario. En toda gráfica, el número de vértices de grado impar es par.

Ejemplo. Consideremos la siguiente gráfica:



Observamos que se cumplen los resultados:

Lema 1. Los dos vértices coloreados de verde tienen el mismo grado.

Teorema 2.

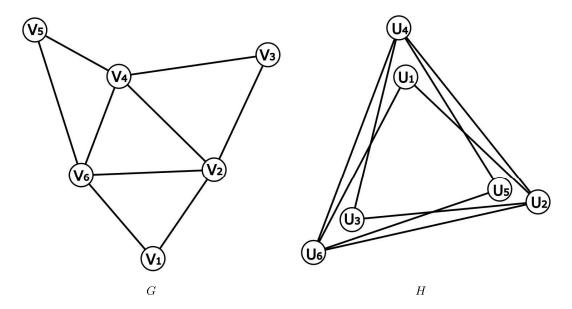
$$\sum_{x \in V(G)} \delta_G(x) = 1 + 1 + 1 + 2 + 2 + 2 + 5 =$$

$$14 = 2(7) = 2|E(G)|$$

Corolario 3. Los vértices de grado impar (coloreados de azul) son en total 4, un número par.

- 4. **Teorema.** Sean G y H dos gráficas con isomorfismo $f: V(G) \to V(H)$ y $x, y \in V(G)$, entonces:
 - a) |V(G)| = |V(H)|
 - b) $y \in N_G(x)$ si y sólo si $f(y) \in N_H(f(x))$
 - c) $\delta_G(x) = \delta_H(f(x))$
 - d) |E(G)| = |E(H)|

Ejemplo. Consideremos las siguientes gráficas G y H, el isomorfismo $f:V(G)\to V(H)$ con $f(v_i)=u_i \ \forall i\in\{1,2,3,4,5,6\}$, y vértices cualquiera en G, digamos, v_1,v_2 :



Observamos que se cumplen los incisos del teorema 4.

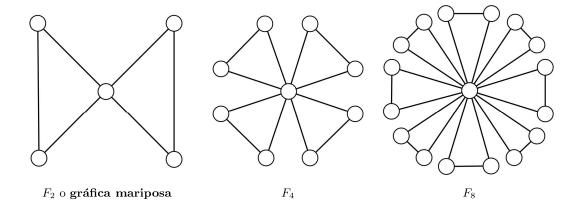
- a) |V(G)| = 6 = |V(H)|
- b) $v_2 \in N_G(v_1)$ y $f(v_2) = u_2 \in N_H(u_1) = N_H(f(v_1))$
- c) $\delta_G(v_1) = 2 = \delta_H(u_1) = \delta_H(f(x))$
- d) |E(G)| = 9 = |E(H)|

1.3. Ejercicios

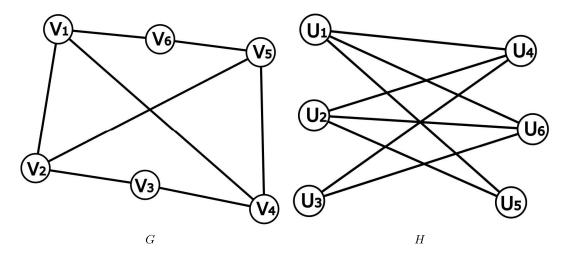
- 1. En una fiesta de finitas personas, varias personas se dan apretones de manos. Demuestra que el número de personas que han dado un número impar de apretones de manos es par.
- 2. ¿Es posible construir una gráfica con 5 vértices donde los grados de los vértices sean 4,3,2,1 y 0? Justifica tu respuesta.
- 3. ¿Hay gráficas que cumplan que todos sus vértices tengan grados distintos? Si existen, salvo isomorfismos ¿Cuántas son? Justifica tu respuesta.
- 4. Sea G una gráfica. Demostrar que $\delta(G) \leq \frac{2|E(G)|}{|V(G)|} \leq \Delta(G)$
- 5. Una gráfica amistad F_n con $1 \le n \in \mathbb{N}$ se forma tomando n triángulos (tres vértices adyacentes entre ellos) que comparten un único vértice común.

Ejemplo.

Sea F_n una gráfica amistad. Determina su orden y tamaño.



- 6. Sea G una gráfica con conjunto de vértices $V(G)=\{1,2,3,4\}$ y conjunto de aristas $E(G)=\{12,13,14,23,34\}$.
 - a) Dibuja una representación de G en el plano.
 - b) Escribe la matriz de adyacencias de G.
 - c) Escribe la matriz de incidencias de G.
- 7. Sean G y H las siguientes gráficas:



Determina si son isomorfas. Justifica tu respuesta.

- 8. Muestra que hay 11 gráficas de orden 4, no isomorfas entre ellas.
- 9. Muestra que en cualquier grupo de 2 ó más personas, hay siempre al menos dos con exactamente el mismo número de amigos dentro del grupo.