

Notas de apoyo para Teoría de Gráficas I Subgráficas, tipos de gráficas y operaciones

Axel Leonardo Castillo Vallejo Bajo la supervisión de: Leonardo Ignacio Martínez Sandoval

2. Subgráficas, tipos de gráficas y operaciones entre gráficas

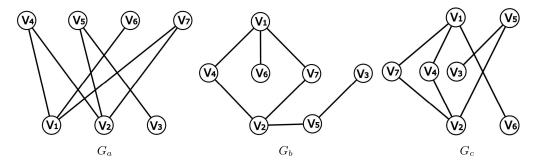
2.1. Definiciones

2.1.1. Igualdad de gráficas, subgráficas, supergráficas y subgráficas propias

Dadas dos gráficas, digamos G y H:

1. Diremos que G es igual a H, denotado por G = H, si V(H) = V(G) y E(H) = E(G).

Ejemplo. Consideremos las siguientes gráficas:



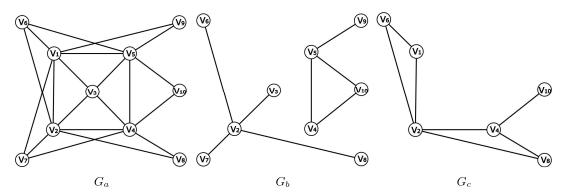
Como $V(G_a) = V(G_b) = V(G_c)$ y $E(G_a) = E(G_b) = E(G_c)$, tenemos que las tres gráficas son iguales: $G_a = G_b = G_c$.

- 2. Diremos que H es subgráfica de G, denotado por $H \leq G$, si $V(H) \subseteq V(G)$ y $E(H) \subseteq E(G)$. Bajo estas condiciones, también diremos que G es supergráfica de H.
- 3. Diremos que H es subgráfica propia de G, denotado por H < G, si $H \le G$ y $H \ne G$. Equivalentemente, pasa que $V(H) \subset V(G)$ o $E(H) \subset E(G)$.

Observación. Si H es subgráfica de G, entonces:

- 1. $|V(H)| \le |V(G)|$
- 2. $|E(H)| \le |E(G)|$

Ejemplo. Consideremos las siguientes gráficas:



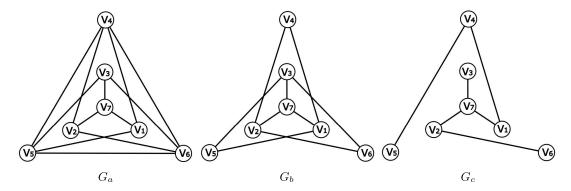
- (a) Como $V(G_b) \subseteq V(G_a)$ y $E(G_b) \subseteq E(G_a)$, tenemos que G_b es una subgráfica de G_a . $G_b \le G_a$ Además, como $G_b \ne G_a$, G_b es una subgrafica propia de G_a , y lo denotamos por $G_b < G_a$.
- (b) Como $V(G_c) \subseteq V(G_a)$ y $E(G_c) \subseteq E(G_a)$, tenemos que G_a es una supergráfica de G_c , y lo denotamos por $G_c \subseteq G_a$.

2.1.2. Subgráfica generadora y subgráfica propia

Dadas dos gráficas G y H:

1. H es subgráfica generadora de G si $H \leq G$ y V(H) = V(G).

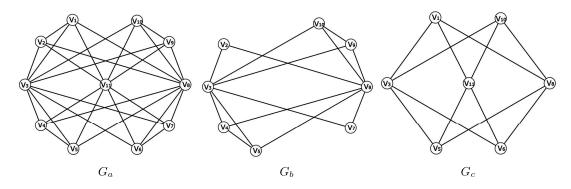
Ejemplo. Consideremos las siguientes gráficas:



 $G_b \leq G_a \geq G_c$, y $V(G_b) = V(G_a) = V(G_c)$. Entonces G_b y G_c son subgráficas generadoras de G_a .

2. H es subgráfica inducida de G si $H \leq G$ y, dos vértices de H son adyacentes si y sólo si son adyacentes en G.

Ejemplo. Consideremos las siguientes gráficas:



- (a) Como $G_b \leq G_a$ y dos vértices en G_b son advacentes si y sólo si son advacentes en G_a . G_b es una subgráfica inducida G_a .
- (b) Como $G_c \leq G_a$ y dos vértices en G_c son advacentes si y sólo si son advacentes en G_a . G_c es una subgráfica inducida G_a .

2.1.3. Gráfica trivial, vacía, completa y K_n

Dada una gráfica G:

1. G es una **gráfica trivial** si el tamaño de G es 0 y el orden de G es 0 o 1.

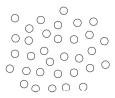
Ejemplo. Las dos gráficas triviales:

Gráfica nula

Gráfica singleton

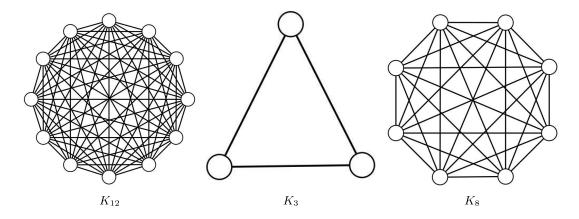
2. G es una gráfica vacía si el tamaño de G es 0.

Ejemplo. La siguiente es una gráfica vacía.



3. G es una **gráfica completa** si $\forall x, y \in V(G)$ tales que $x \neq y$, se tiene $xy \in E(G)$. Equivalentemente, $\forall x \in V(G), N_G(x) = V(G) \setminus \{x\}$ o $\forall x \in V(G), \delta_G(x) = |V(G)| - 1$. Además, denotamos por K_n a una **gráfica completa de orden** n, con $n \geq 1$.

Ejemplo. Las siguientes son gráficas completas:

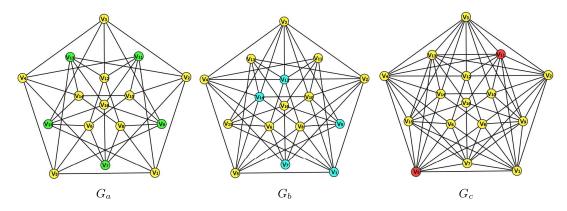


2.1.4. Conjunto independiente

Dada una gráfica G y $S \subseteq V(G)$, diremos que S es un **conjunto independiente en** G si $\forall u, v \in S$ pasa que $uv \notin E(G)$.

Observación. Para un conjunto S independiente en G, si $x \in S$ y $z \in N_G(x)$, entonces $z \notin S$. Es decir, los vértices en S no tienen vecinos en S.

Ejemplo. Consideremos las siguientes gráficas:



(a) Para G_a , el conjunto de vértices en verde, $S_a = \{v_7, v_9, v_{11}, v_{13}, v_{15}\} \subseteq V(G_a)$ es un conjunto independiente en G_a , debido a que entre ellos no comparten vecinos.

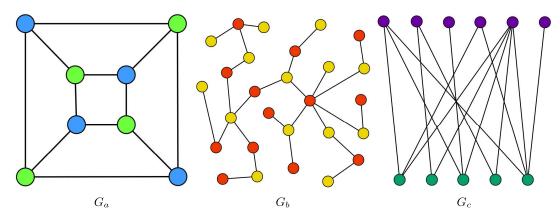
- (b) Para G_b , el conjunto de vértices en azul, $S_b = \{v_1, v_7, v_9, v_{12}, v_{14}\} \subseteq V(G_b)$ es un conjunto independiente en G_b , debido a que entre ellos no comparten vecinos.
- (c) Para G_c , el conjunto de vértices en azul, $S_c = \{v_5, v_{11}\} \subseteq V(G_c)$ es un conjunto independiente en G_c , debido a que entre ellos no comparten vecinos.

2.1.5. Gráfica bipartita, bipartita completa y $K_{n,m}$

Sea G una gráfica no trivial:

1. Diremos que G es bipartita si existe una bipartición de V(G) en conjuntos independientes.

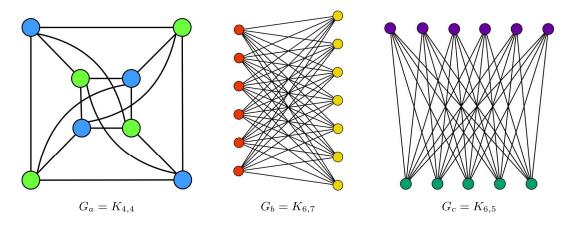
Ejemplo. Consideremos las siguientes gráficas:



La coloración de los vértices nos permite visualizar rápidamente una posible bipartición en conjuntos independientes para cada gráfica. Por lo tanto cada gráfica es bipartita.

2. Decimos que G es **bipartita completa** si es bipartita y, $\forall u \in U \ \forall v \in V$ se tiene que $uv \in E(G)$. Además, si G es bipartita completa con bipartición $\{U, V\}$ en conjuntos independientes, tal que $|U| = n \ y \ |V| = m$, entones diremos que $G = K_{n,m}$

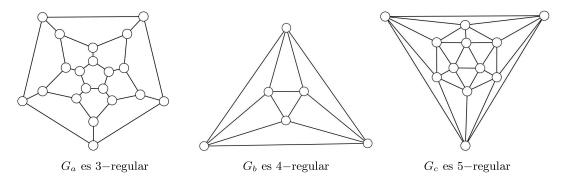
Ejemplo. Las siguientes gráficas son bipartitas completas:



2.1.6. Gráfica r-regular

Sea G una gráfica y $r \in \mathbb{N}$. Decimos que G es r - regular si $\delta_G(v) = r \ \forall v \in V(G)$.

Ejemplo. Las siguientes gráficas son r-regulares:

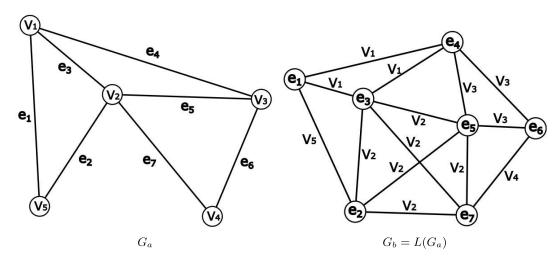


2.1.7. Gráfica de líneas

Dada una gráfica G, se define a la **gráfica de líneas**, denotada por L(G), como la gráfica tal que:

- 1. V(L(G)) = E(G)
- 2. $ab \in E(L(G))$ si y sólo si a y b tienen un vértice en común en G.

Ejemplo. Consideremos las siguientes gráficas:



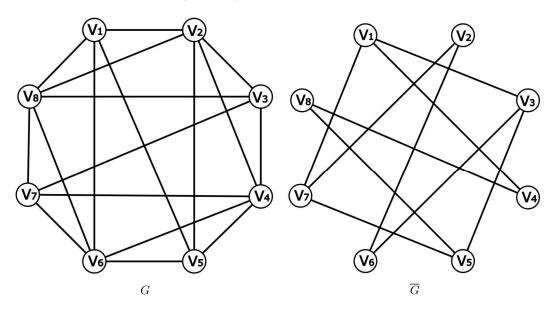
Nota: Para la gráfica G_b , los nombres v_i no son los nombres de las aristas. En este caso solo están ilustrados para identificar cuál es el vértice que comparten las aristas e_j en G_a , y por construcción el motivo por el cual existan dichas aristas entre los vértices e_j en G_b .

2.1.8. Complemento de una gráfica

Dada una gráfica G, el **complemento de** G, denotado por \overline{G} , es la gráfica tal que:

- 1. $V(\overline{G}) = V(G)$
- 2. Sean $u,v\in V(\overline{G})$ con $u\neq v.$ $uv\in E(\overline{G})$ si y sólo si $uv\notin E(G)$

Ejemplo. Consideremos las siguientes gráficas:

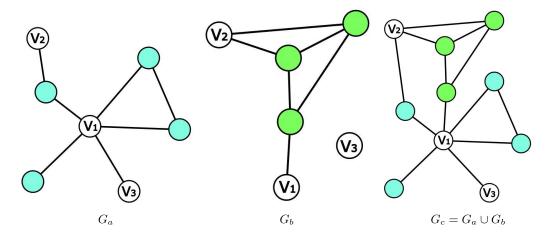


${f 2.1.9.}$ Unión de gráficas, gráficas ajenas, suma de gráficas y producto cartesiano de gráficas

Sean G y H dos gráficas:

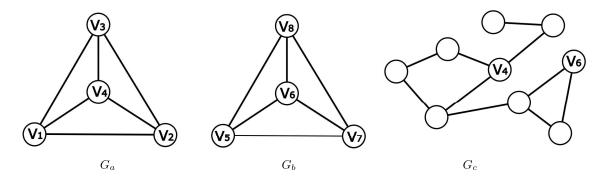
- 1. La **unión de** G **y** H, denotada por $G \cup H$ es la gráfica tal que:
 - a) $V(G \cup H) = V(G) \cup V(H)$
 - b) $E(G \cup H) = E(G) \cup E(H)$

 ${\bf Ejemplo.}$ Consideremos las siguientes gráficas:



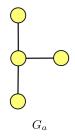
2. Diremos que G y H son ajenas (por vértices) si $V(G) \cap V(H) = \emptyset$.

Ejemplo. Consideremos las siguientes gráficas:



- (a) G_a es ajena a G_b ya que $V(G_a) \cap V(G_b) = \emptyset$
- (b) G_a no es ajena a G_c ya que $V(G_a) \cap V(G_c) = \{v_4\}$
- (c) G_b no es ajena a G_c ya que $V(G_b) \cap V(G_c) = \{v_6\}$
- 3. Si G y H son ajenas, la **suma de** G y H, denotada por G+H, es la gráfica tal que:
 - a) $V(G+H) = V(G) \cup V(H)$
 - b) $E(G+H) = E(G) \cup E(H) \cup \{gh : g \in G \text{ y } h \in H\}$

Ejemplo. Consideremos las siguientes gráficas:



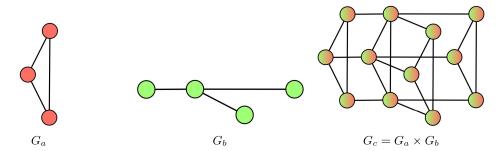
 G_h



 $G_c = G_a + G_b$

- 4. Si G y H son ajenas. El **producto cartesiano de** G **con** H, denotado por $G \times H$, es la gráfica tal que:
 - a) $V(G \times H) = V(G) \times V(H)$
 - b) $(u,x)(v,y) \in E(G \times H)$ si y solo si pasa que: u = v y $xy \in E(H)$, o, x = y y $uv \in E(H)$

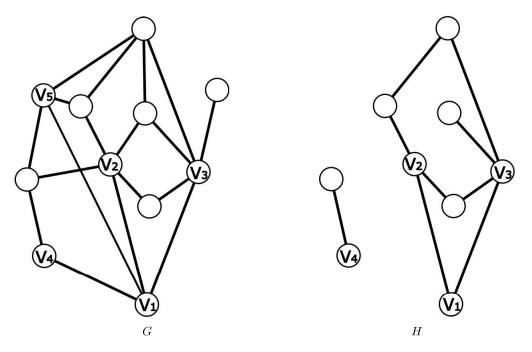
Ejemplo. Consideremos las siguientes gráficas:



2.2. Resultados importantes

1. **Lema.** Sea H una subgráfica de G. Si x es un vértice de H, entonces $N_H(x) \subseteq N_G(x)$ y $E_H(x) \subseteq E_G(x)$. En particular, $\delta_H(x) \le \delta_G(x)$.

Ejemplo. Consideremos las siguientes gráficas G y H con $H \leq G$:



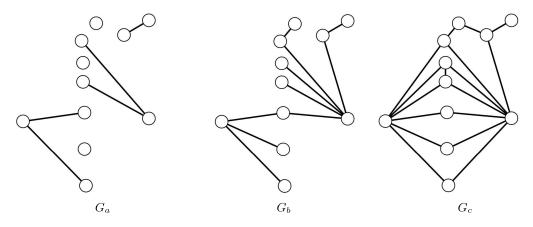
Observamos que se cumple el lema 1.

a) Consideremos un vértice cualquiera en H, digamos v_1 ,

$$N_H(v_1) = \{v_2, v_3\} \subseteq \{v_2, v_3, v_4, v_5\} = N_G(v_1)$$

- b) $E_H(x) = \{v_1v_2, v_1v_3\} \subseteq \{v_1v_2, v_1v_3, v_1v_4, v_1v_5\} = E_G(x)$.
- c) Consideremos un vértice cualquiera en H, digamos v_3 , $\delta_H(v_3) = 4 \le 5 = \delta_G(v_3)$.
- 2. Lema. Sean G_1 , G_2 y G_3 gráficas tales que G_1 es subgráfica generadora de G_2 y G_2 es subgráfica generadora de G_3 , entonces G_1 es subgráfica generadora de G_3 .

Ejemplo. Consideremos las siguientes gráficas G_3 , G_2 y G_1 tales que G_3 es subgráfica generadora de G_2 y G_2 es subgráfica generadora de G_1 :

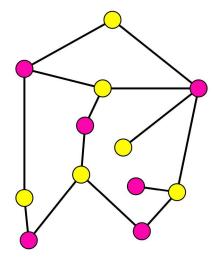


Observamos que se cumple el lema 2. G_3 es subgráfica generadora de G_1 .

3. **Teorema.** Si G es una gráfica bipartita con bipartición X,Y en conjuntos independientes, entonces

$$\sum_{x \in X} \delta_G(x) = |E(G)| = \sum_{y \in Y} \delta_G(y)$$

Ejemplo. Consideremos la siguiente gráfica bipartita, con bipartición X,Y en conjuntos independientes, donde los vértices coloreados de amarillo son los elementos de X y los vértices coloreados de rosa son los elementos de Y:



Observamos que se cumple el teorema 3.

$$\sum_{x \in X} \delta_G(x) = 1 + 2 + 2 + 2 + 3 + 4 = 14$$

$$\sum_{y \in Y} \delta_G(y) = 1 + 2 + 2 + 3 + 3 + 3 = 14$$

$$|E(G)| = 14$$

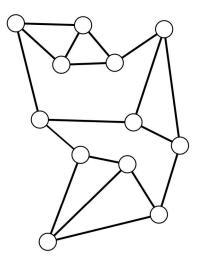
Por lo tanto

$$\sum_{x \in X} \delta_G(x) = |E(G)| = \sum_{y \in Y} \delta_G(y)$$

4. **Teorema.** Si G es r-regular, entonces

$$|E(G)| = \frac{r|V(G)|}{2}$$

Ejemplo. Consideremos la siguiente gráfica 3-regular.

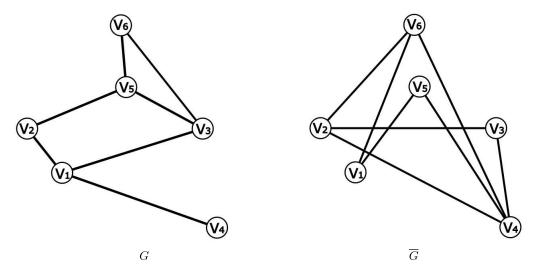


Observamos que se cumple el teorema 4.

$$|E(G)| = 18 = (3)(6) = \frac{3(12)}{2} = \frac{r|V(G)|}{2}$$

- 5. Lema. Sea G una gráfica arbitraria. Entonces:
 - $a) |V(G) = |V(\overline{G})|$
 - b) Si $x \in V(G)$, entonces $N_{\overline{G}}(x) = V(G) \setminus (N_G(x) \cup \{x\})$
 - c) $\delta_G(x) + \delta_{\overline{G}}(x) = |V(G)| + 1$
 - d) $|E(G)| + |E(\overline{G})| = |V(G)| \frac{|V(G)|-1}{2}$

Ejemplo. Consideremos las siguientes gráficas.



Observamos que se cumple el lema 5.

- a) $|V(G) = 6 = |V(\overline{G})|$
- b) Consideremos un vérice cualquiera de G, digamos v_1 . Entonces

$$N_{\overline{G}}(v_1) = \{v_5, v_6\} = \{v_1, v_2, v_3, v_4, v_5, v_6\} \setminus \{v_1, v_2, v_3, v_4\} =$$
$$\{v_1, v_2, v_3, v_4, v_5, v_6\} \setminus (\{v_2, v_3, v_4\} \cup \{v_1\}) = V(G) \setminus (N_G(v_1) \cup \{v_1\})$$

c) Consideremos un vértice cualquiera de G, digamos v_5 ,

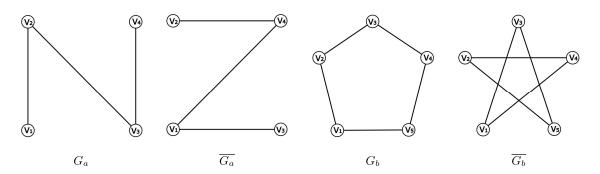
$$\delta_G(v_5) + \delta_{\overline{G}}(v_5) = 3 + 2 = 5 = 6 - 1 = |V(G)| + 1$$

- d) $|E(G)| + |E(\overline{G})| = 7 + 8 = 15 = (3)(5) = (6)\frac{5}{2} = |V(G)|\frac{|V(G)|-1}{2}$
- 6. **Lema.** Si G y H son dos gráficas ajenas, entonces G y H son subgráficas inducidas de $G \cup H$ y de G + H.

2.3. Ejercicios

- 1. Sean $G_1 \leq G_2$ y $G_2 \leq G_3$. Demuestra que $G_1 \leq G_3$.
- 2. Sean G_1 una subgráfica inducida de G_2 y G_2 una subgráfica inducida de G_3 . Demuestra que G_1 es una subgráfica inducida de G_3 .
- 3. Sea K_n la gráfica completa y $n \geq 2$. Demuestra que $\forall x \in V(K_n)$ se tiene que $\delta_{K_n}(x) = n 1$. Además, calcula el número de aristas de K_n .
- 4. Demuestra que no existe una gráfica r-regular con un número impar de vértices si r es impar.
- 5. Sea G una gráfica. Demuestra que el complemento de \overline{G} es igual a G. Es decir, $G_a = \overline{(\overline{G_a})}$.

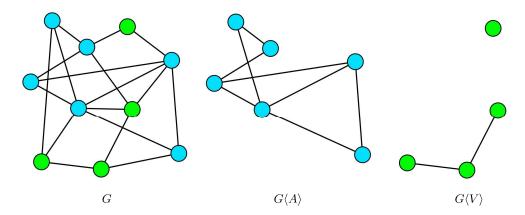
6. Una gráfica es **auto-complementaria** si es isomorfa a su complemento. **Ejemplo.** Todas las siguientes gráficas son auto-complementarias. $G_a \cong \overline{G_a}$ y $G_b \cong \overline{G_b}$.



Sea G una gráfica auto-complementaria tal que |V(G)|=n. Demuestra que $n\equiv 0\pmod 4$ o $n\equiv 1\pmod 4$.

- 7. Sea G una gráfica bipartita r-regular con particiones de tamaños m y n. Demuestra que m=n.
- 8. Dada una gráfica G, la **gráfica inducida por un conjunto de vértices** $S \subseteq V(G)$, es la gráfica $G\langle S \rangle$ con $V(G\langle S \rangle) = S$ y dos vértices de $G\langle S \rangle$ son adyacentes si y sólo si son adyacentes en G.

Ejemplo. Sea A el conjunto de los vértices de G coloreados en azul y V el conjunto de los vértices de G dibujados en verde:



Sea G una gráfica con n vértices y sea $S\subseteq V(G)$ un conjunto independiente en G, de tamaño m. Demuestra que en \overline{G} , pasa que $\overline{G}\langle S\rangle=K_m$.

- 9. Sea G una gráfica y $S \subseteq V(G)$. Demuestra que S es independiente en G si y sólo si $E(G\langle S \rangle) = \emptyset$ [ver definición de $G\langle S \rangle$ en ejercicio 2.3.8.].
- 10. Si G y H son dos gráficas ajenas, entonces |E(G+H)| = |E(G)| + |E(H)| + |V(G)||V(H)|
- 11. Demuestra o da un contra-ejemplo de la siguiente afirmación: si G es bipartita, entonces L(G) también es bipartita.
- 12. Muestra un ejemplo para el lema 2.2.6.