

Notas de apoyo para Teoría de Gráficas I $Caminos\ y\ conexidad$

Axel Leonardo Castillo Vallejo Bajo la supervisión de: Leonardo Ignacio Martínez Sandoval

3. Caminos y conexidad

3.1. Definiciones

3.1.1. Camino, camino cerrado, subcamino, longitud de un camino y concatenación de caminos

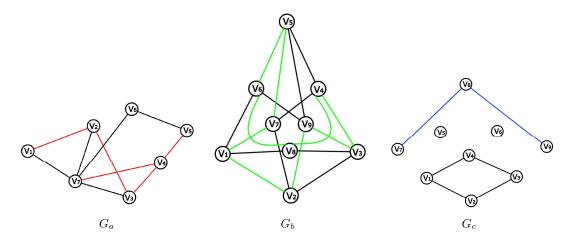
Sea G una gráfica. Un **camino** C **de** G es una sucesión finita de vértices de G, digamos $C = (x_0, \ldots, x_n)$ tal que $\forall i \in \{1, \ldots, n-1\}$ se tiene que $x_i x_{i+1} \in E(G)$.

Al vértice x_0 se le llama **vértice inicial** y al vértice x_n se le llama **vértice final**. Al resto de vértices les llamamos **vértices internos**.

Cuando queremos especificar el vértice inicial y final del camino, decimos que el camino es un $x_0x_n - camino$ en G.

Denotaremos por V(C) al conjunto $\{x_0, \ldots, x_n\}$, y por E(C) al conjunto $\{x_i x_{i+1} \in E(G) : i \in \{0, \ldots, n-1\}\}$

Ejemplo. Consideremos las siguientes gráficas y caminos:



(a) $C_a = (v_1, v_2, v_3, v_4, v_5, v_4, v_7)$

El vértice inicial es v_1 , el vértice final es v_7 y los vértices internos son los vértices en el conjunto $\{v_2, v_3, v_4, v_5\}$

 C_a es un $v_1v_7 - camino$.

 $V(C_a) = \{v_1, v_2, v_3, v_4, v_5, v_7\}$

 $E(C_a) = \{v_1v_2, v_2v_3, v_3v_4, v_4v_5, v_4v_7\}$

(b) $C_b = (v_1, v_2, v_9, v_3, v_4, v_8, v_6, v_5, v_7, v_1)$

El vértice inicial es v_1 , el vértice final es v_1 y los vértices internos son los vértices en el conjunto

 $\{v_2, v_9, v_3, v_4, v_8, v_6, v_5, v_7\}$

 C_b es un $v_1v_1 - camino$.

 $V(C_b) = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9\}$

 $E(C_b) = \{v_1v_2, v_2v_9, v_9v_3, v_3v_4, v_4v_8, v_8v_6, v_6v_5, v_5v_7, v_7v_1\}$

(c) $C_c = (v_7, v_8, v_9, v_8)$

El vértice inicial es v_7 , el vértice final es v_8 y los vértices internos son los vértices en el conjunto $\{v_0, v_0\}$

 C_c es un $v_7v_8 - camino$.

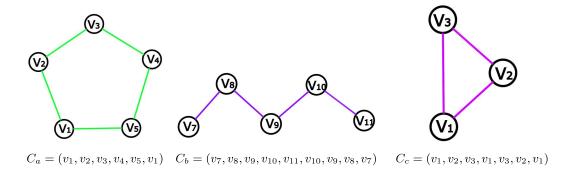
 $V(C_c) = \{v_7, v_8, v_9\}$

 $E(C_c) = \{v_7v_8, v_8v_9\}$

Sea $C = (v_0, \dots, v_n)$ un camino de una gráfica:

1. Si $v_o = v_n$, se dice que C es un camino cerrado.

Ejemplo. Consideremos las siguientes gráficas y caminos cerrados:



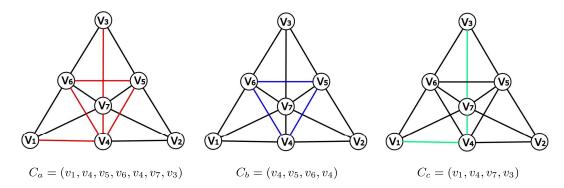
2. La sucesión $C^T=(x_n,\ldots,x_0)$ también es un camino. Es el **camino transpuesto** de C.

Ejemplo. Consideremos la siguiente gráfica y los caminos:



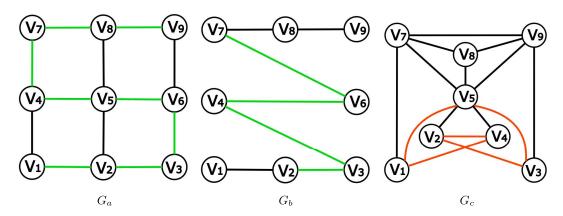
3. Un subcamino de C es cualquier subsucesión de C, digamos C', que también sea un camino y que además $E(C') \subseteq E(C)$.

Ejemplo. Consideremos la siguiente gráficas y caminos, donde C_b y C_c son subcaminos de C_a :



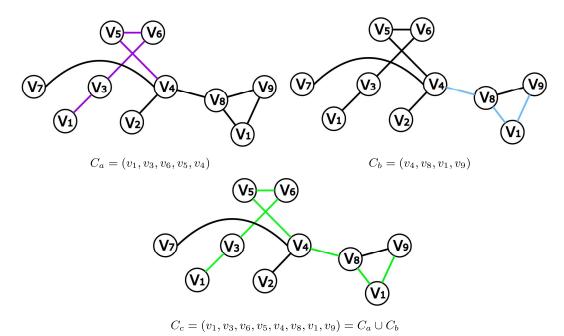
4. Si |V(C)| = n, diremos que su **longitud** es de n-1 y la denotamos por $\lambda(C)$.

Ejemplo. Consideremos las siguientes gráficas:



- (a) $C_a=(v_1,v_2,v_3,v_4,v_5,v_6,v_7,v_8,v_9)$ y su longitud es $\lambda(C_a)=|\{v_1,v_2,v_3,v_4,v_5,v_6,v_7,v_8,v_9\}|-1=9-1=8$
- (b) $C_b = (v_2, v_3, v_4, v_6, v_7)$ y su longitud es $\lambda(C_b) = |\{v_2, v_3, v_4, v_6, v_7\}| 1 = 5 1 = 4$
- (c) $C_c = (v_1, v_5, v_3, v_2, v_4, v_1, v_5, v_3, v_2, v_4, v_1)$ y su longitud es $\lambda(C_c) = |\{v_1, v_5, v_3, v_2, v_4, v_1, v_5, v_3, v_2, v_4, v_1\}| 1 = 11 1 = 10$
- 5. Si C_1 es un uv-camino, digamos (x_0,\ldots,x_n) y C_2 es un vw-camino, digamos (y_o,\ldots,y_n) , la **concatenación de** C_1 **con** C_2 , denotada por $C_1 \cup C_2$, es el camino $(x_o,\ldots,x_n=y_o,\ldots,y_n)$.

Ejemplo. Consideremos la siguiente gráfica y caminos:

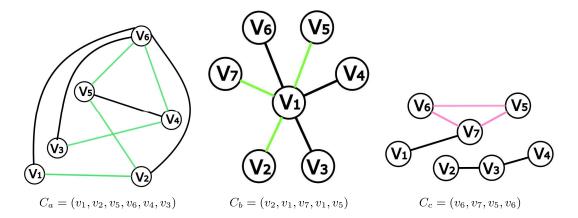


3.1.2. Trayectoria, ciclo y paseo

Dada una gráfica G y C un camino de G, digamos (x_0, \ldots, x_n) :

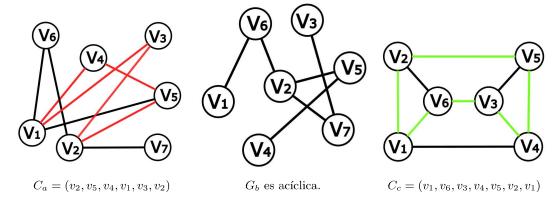
1. Diremos que C es una **trayectoria en** G si $\forall i, j \in \{0, ..., n\}$ con $i \neq j$ se tiene que $x_i \neq x_j$.

Ejemplo. Consideremos las siguientes gráficas y caminos:



- (a) Como C_a no repite vértices, diremos que C_a es una trayectoria.
- (b) Como C_b repite vértices, C_b no es una trayectoria.
- (c) Como C_c repite vértices, C_c no es una trayectoria.
- 2. Diremos que C es un **ciclo en** G si es un camino cerrado de longitud al menos 3, tal que $\forall i, j \in \{1, ..., n-1\}$ con $i \neq j$, se cumple que $x_i \neq x_j$. Si G no tiene ciclos, diremos que es **acíclica**.

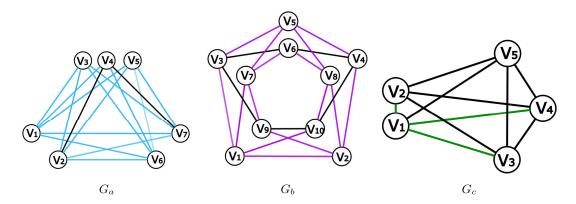
Ejemplo. Consideremos las siguientes gráficas y caminos:



Como $\lambda(C_a)=5\geq 3,\ \lambda(C_c)=6\geq 3$ y repiten únicamente su vértice final e inicial, diremos que C_a y C_c son ciclos (para sus respectivas gráficas).

- 3. Diremos que C es un **paseo en** G si C no repite aristas. Es decir, si $x_i x_{i-1} \in E(C)$ y $x_j x_{j+1} \in E(C)$ e $i \neq j$, entonces $x_i x_{i+1} \neq x_j x_{j+1}$.
 - Además C es un paseo cerrado si es un paseo y un camino cerrado.

Ejemplo. Consideremos las siguientes gráficas y caminos:



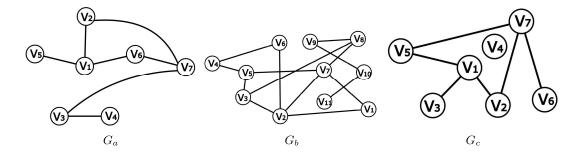
- (a) $C_a = (v_1, v_3, v_2, v_6, v_4, v_1, v_7, v_5, v_2, v_7, v_3, v_6, v_5, v_1, v_6)$, como C_a no repite aristas, diremos que C_a es un paseo.
- (b) $C_b = (v_1, v_{10}, v_8, v_6, v_7, v_9, v_2, v_4, v_5, v_8, v_2, v_1, v_7, v_5, v_3, v_1)$, como C_b no repite aristas y además su vértice inicial y vértice final son el mismo, diremos que C_b es un paseo cerrado.
- (c) $C_c = (v_2, v_1, v_4, v_1, v_3)$, como C_c repite la arista $v_1v_4 = v_4v_1$, C_c no es un paseo.

3.1.3. Conexidad

Dada una gráfica G, diremos que G es conexa si para todo par de vértices en V(G), digamos u y v, existe un uv – camino en G. En caso contrario diremos que G es inconexa.

Observación. Equivalentemente, G es conexa si existe una uv-trayectoria en G.

Ejemplo. Consideremos las siguientes gráficas:



- (a) Es posible hallar un camino entre cualquier par de vértices distintos en G_a , por lo tanto G_a es conexa.
- (b) Es posible hallar una trayectoria (equivalentemente un camino) entre cualquier par de vértices distintos en G_b , por lo tanto G_b es conexa.
- (c) G_c no es conexa, debido a que el vértice v_4 esta aislado del resto, es decir, no es posible hallar un camino de v_4 a cualquier otro vértice en la gráfica G_c .

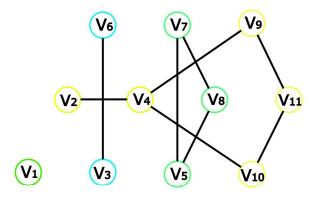
3.1.4. Componentes conexas

Definimos \sim_G como la relación en V(G) dada por, $x \sim_G y$ si y sólo si existe un xy-camino en G. Además se puede demostrar que \sim_G es una relación de equivalencia.

Si K es una clase de equivalencia descrita por la relación \sim_G y $G\langle K \rangle$ es la subgráfica inducida de G cuyos vértices son K, entonces $G\langle K \rangle$ es una subgráfica conexa y no está conectada a ningún otro vértice en $G \setminus V(G\langle K \rangle)$. En tal caso, decimos que $G\langle K \rangle$ es una **componente conexa de** G.

Observación. Dos vértices en G, digamos x y y, están en la misma componente conexa de G si y sólo si existe un xy-camino en G.

Ejemplo. Consideremos la siguiente gráfica y \sim_G :



Tenemos las siguientes clases de equivalencia:

$$V_1 = \{v_1\}, V_2 = \{v_3, v_6\}, V_3 = \{v_5, v_7, v_8\}, V_4 = \{v_2, v_4, v_9, v_{11}, v_{10}\}$$

Efectivamente, para cada $i \in \{1, 2, 3, 4\}, G(V_i)$ es una componente conexa de G_a .

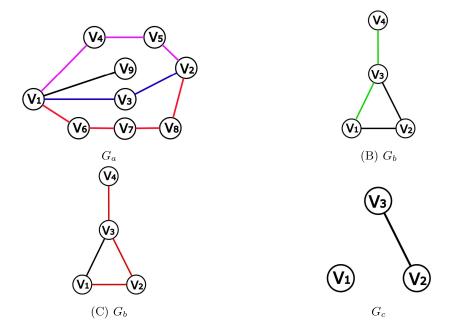
3.1.5. Distancia entre vértices, geodésica, excentricidad, radio, centro, diámetro y periferia

Sean G una gráfica, u y v vértices de G. La **distancia entre** u **y** v, denotada por $d_G(u,v)$, se define como el $min\{\lambda(T): T \text{ es un } uv-camino \text{ en } G\}$.

Nota: Por un teorema enunciado más adelante en esta sección, sabemos que si tenemos un camino entre dos vértices, entonces tenemos una trayectoria entre estos dos vértices, por lo que usualmente pensamos en la distancia como: $d_G(u, v) = min\{\lambda(T) : T \text{ es una } uv - trayectoria \text{ en } G\}.$

En caso de que no existan un uv-camino (equivalentemente una uv-trayectoria) en G, diremos que $d_G(u,v)=\infty$.

Ejemplo. Consideremos las siguientes gráficas:



(a) Calculemos la distancia entre los vértices v_1 y v_2 en G_a .

Las trayectorias posibles entre los vértices v_1 y v_2 son: $T_1 = \{v_1, v_3, v_2\}, T_2 = \{v_1, v_6, v_7, v_8, v_2\}$ y $T_3 = \{v_1, v_4, v_5, v_2\}$

Entonces la distancia entre los vértices v_1 y v_2 es: $d_G(v_1, v_2) = min\{\lambda(T) : T \text{ es una } v_1v_2 - trayectoria \text{ en } G\} = min\{\lambda(T_1), \lambda(T_2), \lambda(T_3)\} = min\{2, 4, 3\} = 3$

(b) Calculemos la distancia entre los vértices v_1 y v_4 en G_2 .

Las trayectorias posibles entre los vértices v_1 y v_4 son: $T_1 = \{v_1, v_3, v_4\}$ y $T_2 = \{v_1, v_2, v_3, v_4\}$, representadas en las figuras (B) y (C), respectivamente.

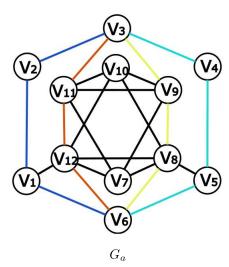
Entonces, $d_G(v_1, v_4) = min\{\lambda(T_1), \lambda(T_2)\} = min\{2, 3\} = 2$

(c) Como no hay trayectorias entre el vértice v_1 y el resto de vértices en la gráfica G_3

$$d_G(v_1, v_2) = \infty = d_G(v_1, v_3)$$

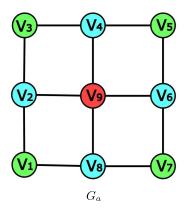
- 1. A un uv-camino de longitud mínima en G se le llama $uv-\mathbf{geod\acute{e}sica}$.
- 2. La **excentricidad de** v **en** G, denotada por $e_G(v)$, se define como el $max\{d_G(v,x):x\in V(G)\}$.

Ejemplo. Consideremos la siguiente gráfica con los siguientes v_3v_6 -trayectorias:



- (a) Los caminos $C_1 = (v_3, v_2, v_1, v_6)$, $C_2 = (v_3, v_{11}, v_{12}, v_6)$, $C_3 = (v_3, v_9, v_8, v_6)$, $C_4 = (v_3, v_4, v_5, v_6)$, son v_3v_6 -geodésicas.
- (b) La excentricidad de v_3 en G_a , es: $e_G(v_3) = max\{d_G(v_3, x) : x \in V(G)\} = max\{2, 3\} = 3$.
- 3. El radio de G, denotado por rad(G), se define como el $min\{e_G(x): x \in V(G)\}$. Al conjunto de vértices de excentricidad mínima se le conoce como el **centro de** G, denotado por Cen(G). Es decir, $Cen(G) = \{x \in V(G): e_G(x) = rad(G)\}$.
- 4. El diámetro de G, denotado por diam(G), se define como el $max\{e_G(x): x \in V(G)\}$. Al conjunto de vértices de excentricidad máxima se le conoce como la **periferia de** G, denotada por Per(G). Es decir, $Per(G) = \{x \in V(G): e_G(x) = diam(G)\}$.

Ejemplo. Consideremos las siguientes gráficas:



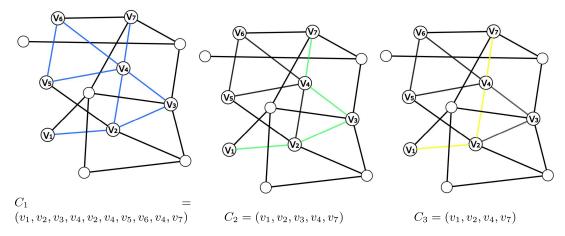
Es fácil ver que los vértices de G_a tienen tres posibles valores de excentricidad: 2, 3 y 4. Correspondientes a los vértices rojos, azules y verdes, respectivamente.

- (a) $rad(G_a) = min\{e_{G_a}(x) : x \in V(G)\} = min\{2, 3, 4\} = 2$ Además, $Cen(G_a) = \{x \in V(G_a) : e_{G_a}(x) = rad(G_a)\} = \{v_9\}$ G_a tiene un único centro, pero para otras gráficas puede haber más de uno.
- (b) $diam(G_a) = max\{e_{G_a}(x) : x \in V(G_a)\} = \{2, 3, 4\} = 4$ $Además, Per(G_a) = \{x \in V(G_a) : e_{G_a}(x) = diam(G)\} = \{v_1, v_3, v_5, v_7\}$

3.2. Resultados importantes

1. **Teorema.** Sean G un gráfica y $u, v \subseteq V(G)$. Si C es un uv-camino, entonces existe un subcamino de C que es una uv-trayectoria en G. En particular, existe un uv-camino en G si y sólo si existe una uv-trayectoria en G.

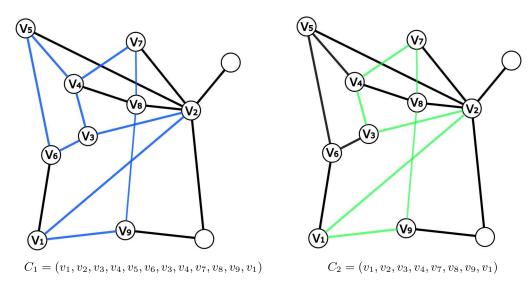
Ejemplo. Consideremos la siguiente gráfica, y caminos.



 C_2 y C_3 son subcaminos de C_1 , es decir, C_2 y C_3 son caminos que son subsucesiones de C_1 y $E(C_2) \subseteq E(C_1) \supseteq E(C_3)$. Además C_2 y C_3 son trayectorias. Por lo tanto se cumple el teorema 1.

2. **Teorema.** Sean G una gráfica y C un camino cerrado en G. Si C es de longitud impar, entonces existe una subsucesión de C que es un ciclo de longitud impar en G.

Ejemplo. Consideremos la siguiente gráfica y caminos:



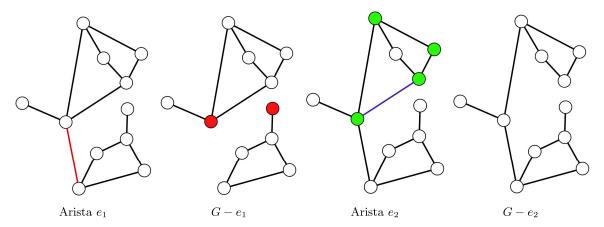
 C_1 es una camino cerrado tal que su longitud es impar $(\lambda(C_1) = |V(C_1)| - 1 = 12 - 1 = 11)$ y C_2 es una subsucesión de C_1 que es un ciclo de longitud impar $(\lambda(C_2) = |V(C_1)| - 1 = 8 - 1 = 7)$. Por lo tanto se cumple el teorema 4.

- 3. Lema. Sean G una gráfica, C_1 un uv-camino y C_2 un vw-camino. Se cumple que:
 - a) $\lambda(C_1 \cup C_2) = \lambda(C_1) + \lambda(C_2)$
 - b) Si x es un vértice de C_1 , entonces $\lambda(u, C_1, x) \leq \lambda(C_1)$

Nota. Si tenemos un xy-camino, digamos $C = (v_0 = x, v_1, \dots, v_{n-1}, v_n = y)$, y z es un vértice de C, es decir $z = v_j$ para la mínima $j \in \{0, \dots, n\}$. La notación (x, C, z) se refiere a un camino que empieza en x y toma el camino C hasta llegar por primera vez a z, es decir $(x, C, z) = (x, v_1, \dots, v_j = z)$.

4. **Lema.** Sea G una gráfica conexa y $e \in E(G)$. La gráfica G - e es conexa si y sólo si existe un ciclo de G, digamos C, tal que $e \in E(C)$.

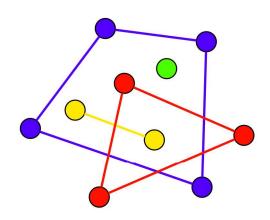
Ejemplo. Consideremos la siguiente gráfica:



Observamos que se cumple el lema 4:

- a) No existe un ciclo que contenga a la arista e_1 , por lo que $G e_1$ es una gráfica inconexa. Por ejemplo, no existe una trayectoria entre los dos vértices en rojo.
- b) Existe un ciclo entre los vértices en verde tal que contenga a la arista e_2 , por lo que $G e_2$ es conexa.
- 5. **Lema.** Si G es una gráfica y P es un paseo cerrado de G, entonces existe una partición de E(P) digamos $\{E_1, \ldots, E_n\}$, tal que $\forall i \in \{1, \ldots, n\}$ se tiene que $P[E_i]$ es un ciclo.
- 6. **Lema.** Sean G una gráfica, H_1, \ldots, H_k las componentes conexas de G e $i \neq j$. Los siguientes enunciados se satisfacen:
 - a) $V(H_i) \cap V(H_j) = \emptyset$
 - b) $E(H_i) \cap E(H_i) = \emptyset$
 - c) No existen $V(H_i)V(H_i)$ -aristas en G.
 - $|V(G)| = \sum_{i=1}^{k} |V(H_i)|$
 - $e) |E(G)| = \sum_{i=1}^{k} |E(H_i)|$

Ejemplo. Consideremos la siguiente gráfica con las componentes conexas H_1 , H_2 , H_3 y H_4 que son pares de conjuntos de vértices y aristas coloreadas de verde, amarillo, rojo y azul, respectivamente.

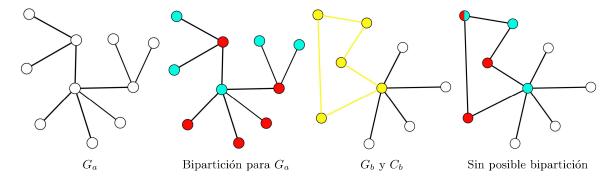


Observamos que se cumplen los resultados del lema 6:

- a) Claramente $V(H_i) \cap V(H_i) = \emptyset$
- b) Evidentemente $E(H_i) \cap E(H_i) = \emptyset$
- c) No existen $V(H_i)V(H_j)$ —aristas en G, por consecuencia directa del punto 2.
- d) $|V(G)| = 10 = 1 + 2 + 3 + 4 = \sum_{i=1}^{k} |V(H_i)|$
- e) $|E(G)| = 8 = 0 + 1 + 3 + 4 = \sum_{i=1}^{k} |E(H_i)|$

- 7. **Lema.** Sea G una gráfica. G es conexa si y sólo si para todo par de vértices en V(G), digamos u y v, existe una uv-trayectoria en G.
- 8. **Teorema.** G es conexa si y sólo si para toda bipartición de V(G), digamos $\{U, V\}$, existe una UV arista en G. Es decir, existen $u \in U$ y $v \in V$ tales que $uv \in E(G)$.
- 9. **Lema.** Sea G una gráfica conexa. Entonces d_G es una métrica para G.
- 10. Lema. Sea G una gráfica y T una geodésica en G. Todo subcamino de T es una geodésica.
- 11. **Teorema (Caracterización de gráficas bipartitas).** Sean G una gráfica conexa no trivial. G es bipartita si y sólo si G no tiene ciclos de longuitud impar.

Ejemplo. Consideremos las siguientes gráficas:



Observamos que se cumple el teorema 11:

- a) G_a es acíclica, en particular no tiene ciclos de longitud impar. Por lo tanto es bipartita.
- b) G_b tiene el ciclo C_b de longitud impar $(\lambda(C_a) = |V(C_a)| 1 = 6 1 = 5)$. Observamos que es imposible una bipartición para G_b

3.3. Ejercicios

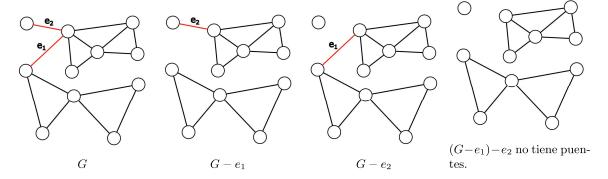
- 1. Sean $H \leq G$ y $u, v \in V(H)$. Demuestra que si existe un uv-camino en H, entonces ese mismo camino también existe en G. ¿Es cierto el recíproco? Justifica tu respuesta.
- 2. Sea \sim_G la relación en V(G) definida como $x \sim_G y$ si y sólo si existe un xy-camino en G. Demuestra que \sim_G es una relacion de equivalencia.
- 3. Sea G una gráfica tal que existen dos xy-trayectorias internamente disjuntas (es decir, no comparten vértices internos). Demuestra que G contiene un ciclo.
- 4. Sean C_1 y C_2 dos ciclos distintos en una gráfica tal que $E(C_1) \cap E(C_2) \neq \emptyset$. Demuestra que la diferencia simétrica $E(C_1 \triangle C_2)$ (las aristas que están en C_1 o C_2 pero no en ambos) es un conjunto con ciclos en los que ningún ciclo comparte aristas con otro.
- 5. Sea G es una gráfica conexa. Demostrar que $rad(G) \leq diam(G) \leq 2rad(G)$.
- 6. Sean C_1 una uv-trayectoria y C_2 una vw-trayectoria en una gráfica G. Demuestra que $C_1 \cup C_2$ contiene una uw-trayectoria.
- 7. Sean G y H dos gráficas conexas no ajenas (por vértices). Demuestra que su unión es una gráfica conexa.

- 8. Dada una gráfica G y $v \in V(G)$, decimos que v es un **vértice de corte** en G si G v tiene más componentes conexas que G.
 - **Ejemplo.** Los vértices coloreados en rojo son todos los posibles vértices de corte para sus respectivas gráficas:



Demuestra que v es un vértice de corte si y sólo si existen vértices x y y distintos de v tales que toda xy—trayectoria pasa por v.

- 9. Dada una gráfica G y $e \in E(G)$, decimos que e es un **puente** en G si G-e tiene más componentes conexas que G.
 - **Ejemplo.** Las aristas coloreadas en rojo son todos los posibles puentes para sus respectivas gráficas:



Demuestra que e es un puente si y sólo si existen vértices x y y distintos tales que toda xy-trayectoria pasa por e.

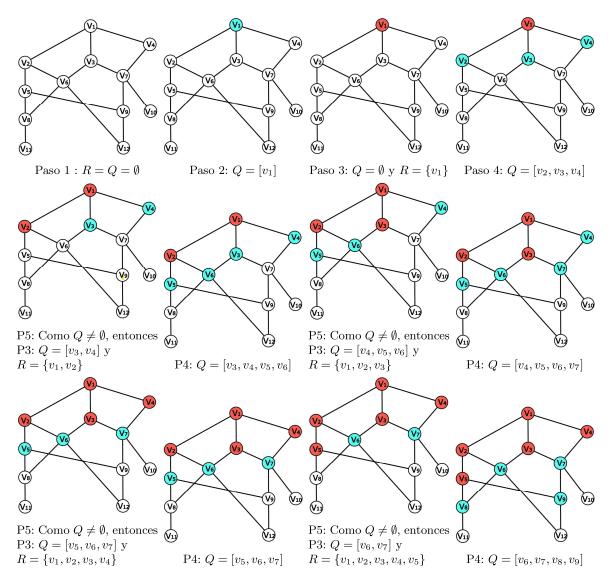
- 10. Sea G una gráfica y $e \in E(G)$. Demuestra que e es un puente [ver definición de un puente en ejercicio 3.3.9.] si y sólo si e no pertenece a ningún ciclo en G.
- 11. Sea G un gráfica con k componentes conexas, ¿Cuál es el mínimo de aristas que debemos agregar a G para que sea conexa?
- 12. Sea $C = (v_0, v_1, \dots, v_n)$ una $v_0 v_n$ —geodésica en una gráfica G. Demuestra que para cualquier pareja $\{i, j\}$ con $0 \le i < j \le n$, el subcamino $(v_i, v_{i+1}, \dots, v_j)$ es una $v_i v_j$ geodésica.

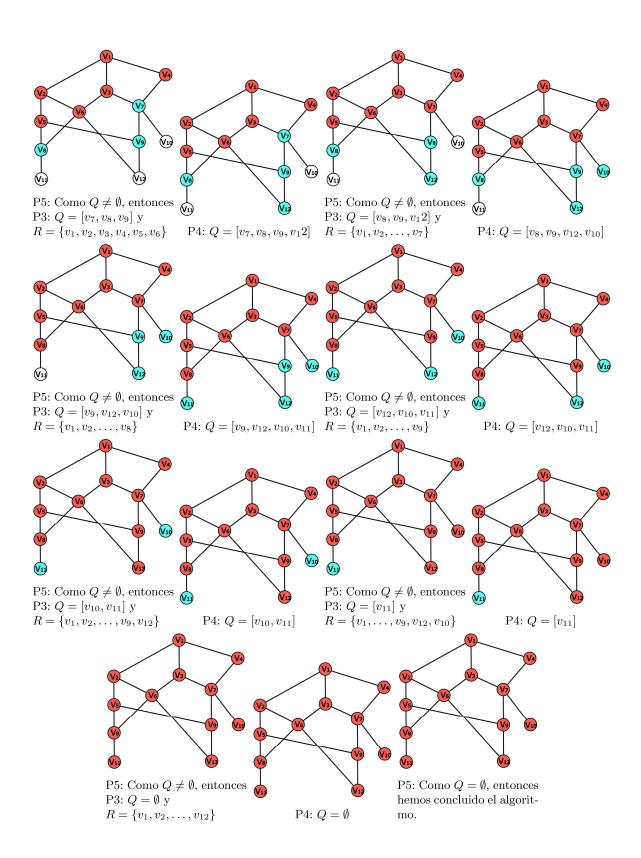
3.4. Algoritmo de búsqueda BFS y DFS

El algoritmo de búsqueda en anchura **BFS - Breadth First Search** sirve para recorrer la gráfica a lo ancho, de nivel a nivel. Requerimos una gráfica conexa G, un vértice inicial, una lista de vértices visitados y una cola Q:

- 1. Iniciamos con $R = \emptyset = Q$.
- 2. Se agrega el vértice inicial a Q.
- 3. Se retira el primer vértice de Q, digamos x y se agrega a R.
- 4. Los vértices en N(x) que no estén en Q ni en R se agregan a Q.
- 5. Repetimos los pasos 3 y 4 hasta que $Q = \emptyset$.

Ejemplo. Consideremos la siguiente gráfica y apliquemos el algoritmo BFS.





El algoritmo de búsqueda en profundidad **DFS - Depth First Search** sirve para recorrer la gráfica en lo "profundo". Requerimos una gráfica conexa G, un vértice inicial, una lista de vértices visitados y una pila P:

- 1. Iniciamos con $R = \emptyset = P$.
- 2. Se agrega el vértice inicial a P.
- 3. Se retira el último vértice de P, digamos x y se agrega a R.
- 4. Los vértices en N(x) que no estén en P ni en R se agregan a P.
- 5. Repetimos los pasos 3 y 4 hasta que $P = \emptyset$.

Ejemplo. Consideremos la siguiente gráfica y apliquemos el algoritmo DFS.

