

Notas de apoyo para Teoría de Gráficas I $Recorridos\ en\ gráficas$

Axel Leonardo Castillo Vallejo Bajo la supervisión de: Leonardo Ignacio Martínez Sandoval

5. Recorridos en gráficas

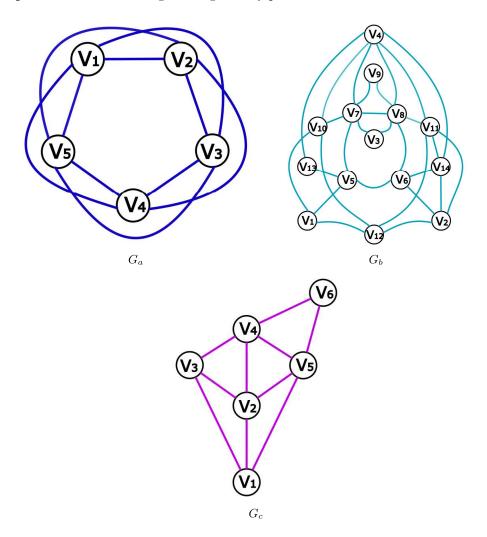
5.1. Definiciones

5.1.1. Paseos eulerianos y gráficas eulerianas

Sea G una gráfica y P un paseo.

- 1. Decimos que P es un paseo euleriano abierto de G si E(G) = E(P) y su vértice inicial y final son distintos.
- 2. Decimos que P es un paseo euleriano cerrado (o ciclo euleriano) de G si E(G) = E(P) y su vértice inicial y final son el mismo.
- 3. Decimos que G es **euleriana** si tiene un paseo euleriano cerrado.

Ejemplo. Consideremos las siguientes gráficas y paseos:



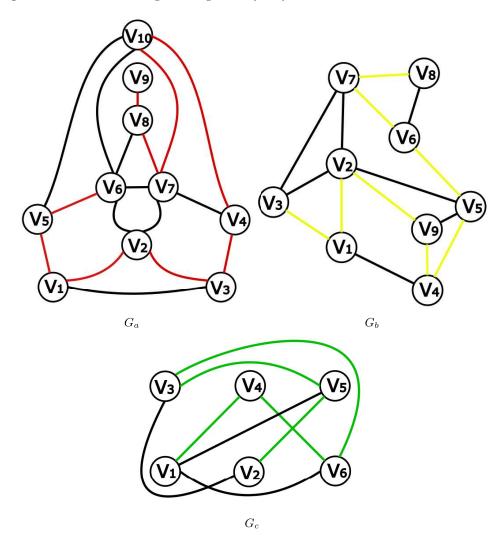
- (a) $P_a = (v_1, v_2, v_3, v_4, v_5, v_1, v_3, v_5, v_2, v_4, v_1)$ cumple que $E(G_a) = E(P_a)$, es decir, P_a un paseo euleriano cerrado. Por lo tanto G_a es un gráfica euleriana.
- (b) $P_b = (v_1, v_{12}, v_2, v_{11}, v_4, v_{13}, v_5, v_6, v_{14}, v_4, v_8, v_{11}, v_{14}, v_2, v_6, v_8, v_9, v_7, v_4, v_{10}, v_1, v_5, v_7, v_8, v_3, v_7, v_{10}, v_{12}, v_{11})$ cumple que $E(G_b) = E(P_b)$, es decir, P_a un paseo euleriano.
- (c) $P_c = (v_1, v_5, v_6, v_4, v_5, v_2, v_3, v_4, v_2, v_1, v_3)$ cumple que $E(G_c) = E(P_c)$, es decir, P_c un paseo euleriano.

5.1.2. Trayectorias hamiltonianas, ciclos hamiltonianos y gráficas hamiltonianas

Sea G una gráfica no trivial, T un trayectoria de G y C un ciclo de G.

1. Decimos que T es una trayectoría hamiltoniana si V(T) = V(G).

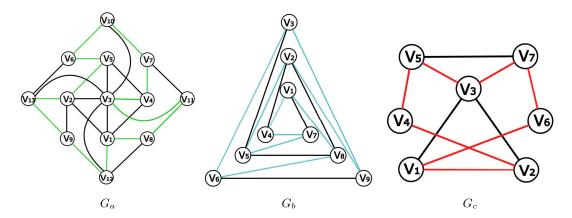
Ejemplo. Consideremos las siguientes gráficas y trayectorias:



- (a) $T_a = (v_9, v_8, v_7, v_{10}, v_4, v_3, v_2, v_1, v_5, v_6)$ cumple que $V(G_a) = V(T_a)$, es decir, T_a es una trayectoria hamiltoniana.
- (b) $T_b = (v_8, v_7, v_6, v_5, v_4, v_9, v_2, v_1, v_3)$ cumple que $V(G_b) = V(T_b)$, es decir, T_b es una trayectoria hamiltoniana.
- (c) $T_c = (v_1, v_4, v_6, v_3, v_5, v_2)$ cumple que $V(G_a) = V(T_c)$, es decir, T_c es una trayectoria hamiltoniana.

- 2. Decimos que C es un ciclo hamiltoniano si V(C) = V(G).
- 3. Decimos que G es una gráfica hamiltoniana si tiene al menos un ciclo hamiltoniano.

Ejemplo. Consideremos las siguientes gráficas y ciclos:



(a) $C_a = (v_3, v_4, v_7, v_{10}, v_6, v_5, v_2, v_{13}, v_9, v_{12}, v_1, v_8, v_{11}, v_3)$ cumple que $V(G_a) = V(C_a)$, es decir, C_a es un ciclo hamiltoniano.

Hemos encontrado al menos un ciclo hamiltoniano para G_a , por lo tanto G_a es un gráfica hamiltoniana.

(b) $C_b = (v_9, v_3, v_6, v_8, v_1, v_4, v_7, v_5, v_2, v_9)$ cumple que $V(G_b) = V(C_b)$, es decir, C_b es un ciclo hamiltoniano.

Hemos encontrado al menos un ciclo hamiltoniano para G_b , por lo tanto G_b es un gráfica hamiltoniana.

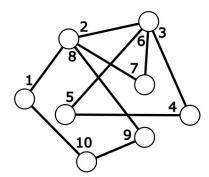
(c) $C_c = (v_1, v_2, v_4, v_5, v_3, v_7, v_6, v_1)$ cumple que $V(G_c) = V(C_c)$, es decir, C_c es un ciclo hamiltoniano

Hemos encontrado al menos un ciclo hamiltoniano para G_c , por lo tanto G_c es un gráfica hamiltoniana.

5.2. Resultados importantes

- 1. **Lema.** Sean G una gráfica, P un paseo de G y H = G[E(P)]. Entonces:
 - a) Si P es cerrado, entonces todo vértice en P tiene grado par en H.
 - b) Si P es abierto, entonces todo vértice interno de P es de grado par en H y, los vértices inicial y final de P tienen grado impar en H.
- 2. Lema. Sea G una gráfica conexa no trivial tal que todo vértice de G tiene grado par y sea x un vértice arbitrario. Si P es un paseo en G cuyo vértice inicial es x y es de longitud máxima, entonces P es cerrado.
- 3. Lema. Sea G una gráfica y P un paseo cerrado de G, entonces existe una partición de E(P), digamos $\{E_1, \ldots, E_n\}$, tal que para cada $i \in \{1, \ldots, n\}$ se tiene que $P[E_i]$ es un ciclo.
- 4. **Teorema de Euler.** Sea G una gráfica conexa no trivial. G es euleriana si y sólo si todo vértice de G tiene grado par.

Ejemplo. Consideremos la siguiente gráfica G y paseo P (siguiendo la numeración de aristas):



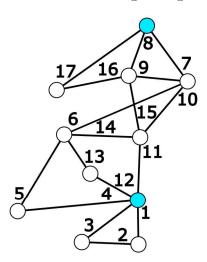
Observamos que se cumplen los resultados:

Lema 3. Una partición de $E(P) = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ es $\{E_1, E_2, E_3\}$ con $E_1 = \{3, 4, 5\}$, $E_2 = \{2, 6, 7\}$ y $E_3 = \{1, 8, 9, 10\}$. Claramente $P[E_i]$ es un ciclo para cada $i \in \{1, 2, 3\}$

Teorema de Euler. Cada vértice de G tiene grado par y existe P un ciclo euleriano de G.

5. Corolario. Sea G una gráfica conexa no trivial. G tiene un paseo euleriano abierto si y sólo si G tiene exactamente dos vértices de grado impar.

Ejemplo. Consideremos la siguiente gráfica G y paseo P (siguiendo la numeración de aristas):



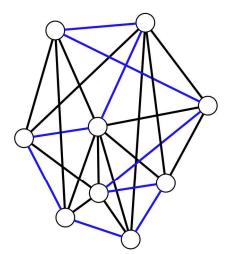
Observamos que se cumple el corolario 5:

P es un paseo euleriano abierto y G solo tiene dos vértices de grado impar (los dos vértices coloreados de azul).

- 6. Teorema de Bondy-Chvátal. Sean G una gráfica con al menos tres vértices y dos vértices no adyacentes, digamos u y v, tales que $\delta_G(u) + \delta_G(v) \ge |V(G)|$. G es hamiltoniana si y sólo si G + uv es hamiltoniana.
- 7. Teorema de Ore 1. Sea G una gráfica con al menos tres vértices. Si para cualquier par de vértices no adyacentes de G, digamos u y v, se satisface que $\delta_G(u) + \delta_G(v) \geq |V(G)|$, entonces G es hamiltoniana.
- 8. Teorema de Ore 2. Sea G una gráfica con al menos tres vértices. Si para cualquier par de vértices no adyacentes de G, digamos u y v, se satisface que $\delta_G(u) + \delta_G(v) \ge |V(G)| 1$, entonces G tiene una trayectoria hamiltoniana.

9. **Teorema de Dirac.** Sea G una gráfica con al menos tres vértices. Si para cualquier vértice de G, digamos v, se cumple que $\delta_G(x) \geq \frac{|V(G)|}{2}$, entonces G es hamiltoniana.

Ejemplo. Consideremos la siguiente gráfica G y ciclo C (siguiendo la aristas coloreadas de azul):



Observamos que se cumple el teorema de Dirac:

G es una gráfica tal que todos sus vértices tiene grado mayor que $\frac{|V(G)|}{2} = \frac{9}{2} = 4.5$, Entonces existe C un ciclo hamiltoniano y por lo tanto G es una gráfica hamiltoniana.

5.3. Ejercicios

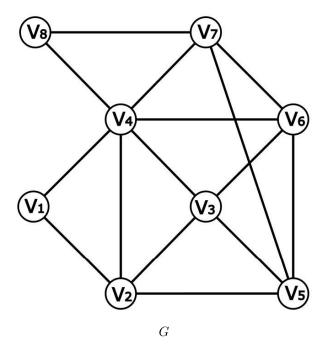
- 1. Sean G y H dos gráficas eulerianas de orden par. Entonces G+H es euleriana.
- 2. Sea G una gráfica conexa y P un paseo abierto de longitud máxima. Demuestra que los vértices inicial y final de P no pueden tener vecinos que no estén en P.
- 3. Sea G una gráfica euleriana. Demuestra que la L(G) también es euleriana.
- 4. Demuestra que K_n es hamiltoniana para toda $n \geq 3$.
- 5. Sea G una gráfica hamiltoniana y $S \subseteq V(G)$ no vacío. Demuestra que el número de componentes conexas de G S es menor o igual que |S|.
- 6. Demuestra que ninguna gráfica con un vértice de corte puede ser hamiltoniana. [ver definición de vértice de corte en ejercicio 3.3.9.].
- 7. Sea G una gráfica bipartita con particiones de tamaños n y m. Demuestra que si G es hamiltoniana, entonces m=n.
- 8. Sea G una gráfica r-regular conexa de tamaño $n \geq 3$.
 - a) ¿Bajo que condición para r, G es hamiltoniana?
 - b) ¿Bajo que condición para r, G es euleriana?
 - c) ¿Bajo que condición para r, G no puede tener un paseo euleriano abierto?

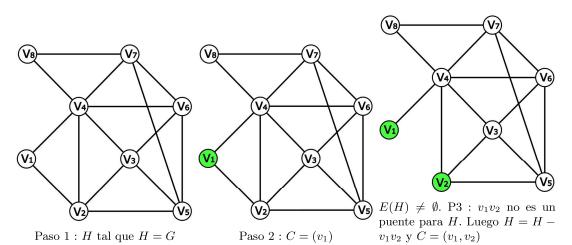
5.4. Algoritmo de Fleury

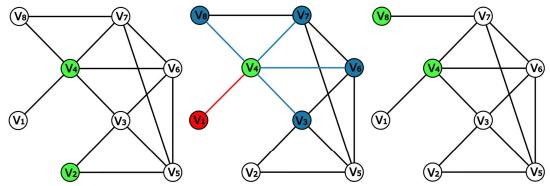
Para el **algoritmo de Fleury para ciclos eulerianos** requerimos una gráfica conexa no trivial G tal que todos sus vértices tienen grado par, y una lista C donde iremos construyendo el ciclo euleriano.

- 1. Iniciamos con una gráfica, digamos H, tal que H = G.
- 2. Tomamos un vértice cualquiera de V(H) y lo agregamos a C.
- 3. Mientras $E(H) \neq \emptyset$:
 - a) Sea x el último elemento agregado a C. Seleccionamos un vecino de x, digamos y, tal que xy no sea un puente para H, a menos que y sea el único vecino de x en H [ver definición de un puente en ejercicio 3.3.9.].
 - b) Hacemos H = H xy y agregamos y a C.
- 4. Si $E(H) = \emptyset$ terminamos el algoritmo y obtenemos C un ciclo euleriano para G.

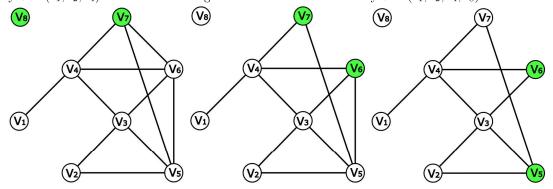
Ejemplo. Consideremos la siguiente gráfica G, conexa no trivial tal que todos sus vértices tienen grado par. Apliquemos el algoritmo de Fleury para ciclos eulerianos.

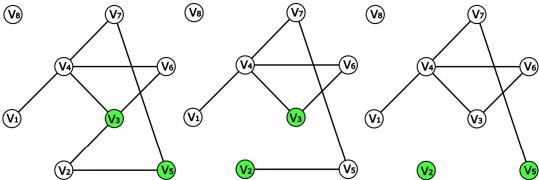


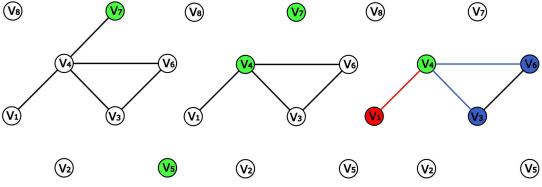




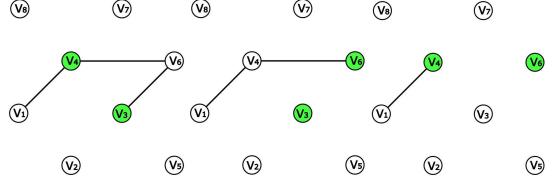
Como $E(H) \neq \emptyset$. P3 : v_2v_3 no es Como $E(H) \neq \emptyset$. P3 : v_4v_1 es un Como $E(H) \neq \emptyset$. P3 : v_4v_8 no es un puente para H. Luego puente para H, pero no es el úni- un puente para H. Luego $H = H - v_2v_3$ co vecino de v_4 en H, entonces $H = H - v_4v_8$ y $C = (v_1, v_2, v_4)$ elegimos otro. y $C = (v_1, v_2, v_4, v_8)$

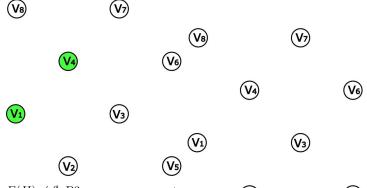






 $E(H) \neq \emptyset$. P3 : v_5v_7 no es un $E(H) \neq \emptyset$. P3 : v_7v_4 es un puente $E(H) \neq \emptyset$. P3 : v_4v_1 es un puente puente para H. Luego para H, pero v_4 es el único vecino para H, pero no es el único vecino para H, pero no es el único vecino para H, entonces elegity $C = C \cup (x_5, x_7)$ $C = C \cup (x_7, x_4)$ mos otro.





 $E(H) \neq \emptyset$. P3 : v_4v_1 es un puente para H, pero v_1 es el único vecino de v_4 en H. Luego $H = H - v_4v_1$ $E(H) = \emptyset$. P4 : hemos concluido y $C = C \cup (x_4, x_1)$ el algoritmo.

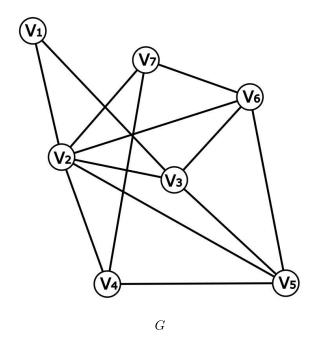
Entonces un ciclo euleriano para G es:

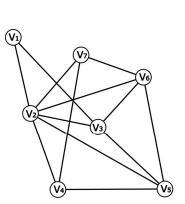
$$C = (v_1, v_2, v_4, v_8, v_7, v_6, v_5, v_3, v_2, v_5, v_7, v_4, v_3, v_6, v_4, v_1)$$

Para el algoritmo de Fleury para paseos eulerianos abiertos requerimos una gráfica conexa no trivial G tal que tiene exactamente dos vértices de grado impar, y una lista P donde iremos construyendo el ciclo euleriano.

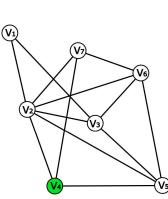
- 1. Iniciamos con una gráfica, digamos H, tal que H=G.
- 2. Tomamos un vértice de grado impar en V(H) y lo agregamos a P.
- 3. Mientras $E(H) \neq \emptyset$:
 - a) Sea x el último elemento agregado a P. Seleccionamos un vecino de x, digamos y, tal que xy no sea un puente para H, a menos que y sea el único vecino de x en H [ver definición de un puente en ejercicio 3.3.9.].
 - b) Hacemos H = H xy y agregamos y a P.
- 4. Si $E(H) = \emptyset$ terminamos el algoritmo y obtenemos P un paseo euleriano abierto para G.

Ejemplo. Consideremos la siguiente gráfica G, conexa no trivial tal que tiene exactamente dos vértices de grado impar $\{v_4, v_7\}$. Apliquemos el algoritmo de Fleury para paseos eulerianos abiertos.

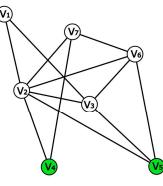




Paso 1 : H tal que H=G

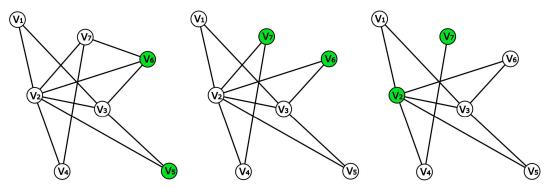


Paso 2 : $P = (v_4)$



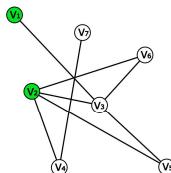
 $E(H) \neq \emptyset.$ P3 : v_4v_5 no es un puente para H. Luego

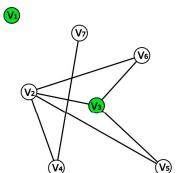
$$H = H - v_4 v_5 \text{ y } P = (v_4, v_5)$$

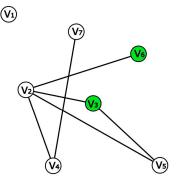


Como $E(H) \neq \emptyset$. P3 : v_5v_6 no es Como $E(H) \neq \emptyset$. P3 : v_6v_7 no es Como $E(H) \neq \emptyset$. P3 : v_7v_2 no es un puente para H. Luego un puente para H. Luego

 $H = H - v_5 v_6$ y $P = (v_4, v_5, v_6)$ $H = H - v_6 v_7$ y $P = (v_4, v_5, v_6, v_7)$ un puente para H. Lueg $H = H - v_7 v_2$ y $P = (v_4, v_5, v_6, v_7, v_2)$



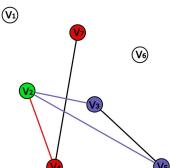


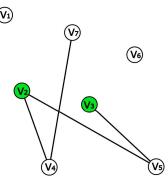


Como $E(H) \neq \emptyset$. P3 : v_2v_1 no es $E(H) \neq \emptyset$. P3 : v_1v_3 es un puente Como $E(H) \neq \emptyset$. P3 : v_3v_6 no es un puente para H. Luego para H, pero v_3 es el único vecino un puente para H. Luego $H = H - v_2v_1$ de v_1 en H. Luego $H = H - v_1v_3$ $H = H - v_3v_6$

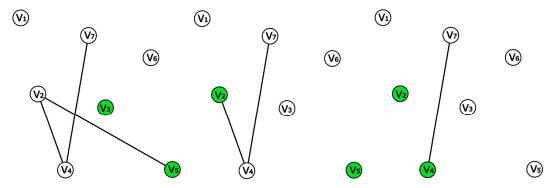
 $H = H - v_2 v_1$ de v_1 en H. Luego $H = H - v_1 v_3$ $H = H - v_3 v_6$ $y P = (v_4, v_5, v_6, v_7, v_2, v_1)$ $y P = P \cup (x_1, x_3)$ $y P = P \cup (x_3, x_6)$

(V)

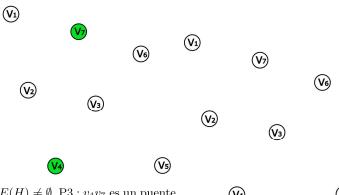




 $E(H) \neq \emptyset$. P3 : v_6v_2 es un puente $E(H) \neq \emptyset$. P3 : v_2v_4 es un puente Como $E(H) \neq \emptyset$. P3 : v_2v_3 no es para H, pero v_2 es el único vecino para H, pero no es el único vec un puente para H. Luego de v_6 en H. Luego $H = H - v_6v_2$ cino de v_2 en H, entonces elegi- $H = H - v_2v_3$ y $P = P \cup (x_6, x_2)$ mos otro. y $P = P \cup (x_2, x_3)$



 $E(H) \neq \emptyset$. P3 : v_3v_5 es un puente $E(H) \neq \emptyset$. P3 : v_5v_2 es un puente $E(H) \neq \emptyset$. P3 : v_2v_4 es un puente para H, pero v_5 es el único vecino para H, pero v_2 es el único vecino para H, pero v_4 es el único vecino de v_3 en H. Luego $H = H - v_3v_5$ de v_5 en H. Luego $H = H - v_5v_2$ de v_2 en H. Luego $H = H - v_2v_4$ y $P = P \cup (x_3, x_5)$ y $P = P \cup (x_5, x_2)$ y $P = P \cup (x_2, x_4)$



 $E(H) \neq \emptyset$. P3: v_4v_7 es un puente para H, pero v_7 es el único vecino de v_4 en H. Luego $H = H - v_4v_7$ $E(H) = \emptyset$. P4: hemos concluido y $P = P \cup (x_4, x_7)$ el algoritmo.

Entonces un paseo euleriano abierto para G es:

$$P = (v_4, v_5, v_6, v_7, v_2, v_1, v_3, v_6, v_2, v_3, v_5, v_2, v_4, v_7)$$