

Notas de apoyo para Teoría de Gráficas I Apareamientos y coloración por aristas

Axel Leonardo Castillo Vallejo Bajo la supervisión de: Leonardo Ignacio Martínez Sandoval

6. Apareamientos en gráficas y coloración por aristas

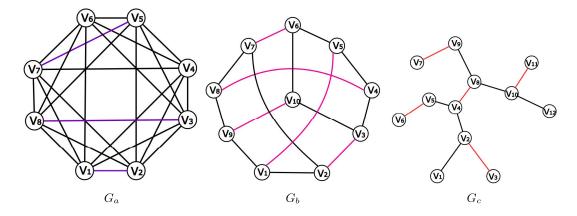
6.1. Definiciones

6.1.1. Apareamiento, apareado y saturado

Sean G una gráfica y $M \subseteq E(G)$:

- 1. Diremos que M es un **apareamiento** de G si cualesquiera dos aristas distintas de M, no comparten extremos.
- 2. Si M es un apareamiento de G, $uv = e \in M$, i.e. u y v son extremos de la arista e, entonces diremos que u y v están M apareados.
- 3. Sea M es un apareamiento de G y $x \in V(G)$. Diremos que x es M saturado si x es un vértice extremo de alguna arista de M. Si es necesario especificar la arista de la que es extremo x, digamos e, entonces diremos que x es M saturado por e.

Ejemplo. Consideremos las siguientes gráficas y conjuntos de aristas:



(a) $M_a = (v_1v_2, v_8v_3, v_7v_5) \subseteq E(G_a)$ y cumple que cualesquiera dos aristas distintas no comparten extremos, por lo tanto M_a es un apareamiento de G_a .

Como $v_1v_2 \in M_a$, entonces decimos que v_1 y v_2 están M_a -apareados. De igual modo v_8 y v_3 están M_a -apareados, y v_7 y v_5 están M_a -apareados.

Además diremos que v_1, v_2, v_8, v_3, v_7 y v_5 son M_a -saturados.

(b) $M_b = (v_1v_5, v_2v_3, v_9v_{10}, v_6v_7, v_4v_8) \subseteq E(G_b)$ y cumple que cualesquiera dos aristas distintas no comparten extremos, por lo tanto M_b es un apareamiento de G_b .

Como $v_1v_5 \in M_b$, entonces decimos que v_1 y v_5 están M_b -apareados. De igual modo v_2 y v_3 están M_b -apareados, v_9 y v_{10} están M_b -apareados, v_9 y v_{10} están M_b -apareados, v_9 y v_{10} están v_9 -apareados, v_9 y v_9 están v_9 -apareados.

Además diremos que todos los vértices en $V(G_b)$ son M_b -saturados.

(c) $M_c = (v_2v_3, v_5v_6, v_7v_9, v_4v_8, v_{10}v_{11}) \subseteq E(G_a)$ y cumple que cualesquiera dos aristas distintas no comparten extremos, por lo tanto M_c es un apareamiento de G_c .

Como $v_2v_3 \in M_c$, entonces decimos que v_2 y v_3 están M_c -apareados. De igual modo v_5 y v_6 están M_c -apareados, v_7 y v_9 están M_c -apareados, v_4 y v_8 están M_c -apareados, y v_{10} y v_{11} están M_c -apareados.

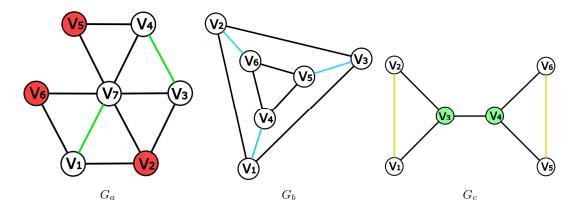
Además diremos que $v_2, v_3, v_5, v_6, v_7, v_9, v_4, v_8, v_{10}$ y v_{11} son M_c -saturados.

6.1.2. Apareamiento: Maximal, Máximo y Perfecto

Sean G una gráfica y $M \subseteq E(G)$ un apareamiento de G.

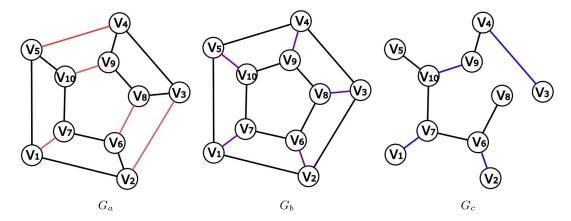
1. Decimos que M es un **apareamiento maximal** si para cada apareamiento N de G tal que $M \subseteq N$, se satisface que M = N.

Ejemplo. Consideremos las siguientes gráficas y apareamientos:



- (a) $M_a = (v_1v_7, v_3v_4)$, es evidente que para cualquier otro apareamiento, digamos N_a , tal que $M_a \subseteq N_a$ debe suceder que $M_a = N_a$, debido a que todos los vértices en G_a que no están M_a -saturados $(v_6, v_5$ saturados y v_2) tienen a todos ssaturados vecinos M_a -saturados, es decir no es posible agregar una arista más a M_a de tal forma que siga siendo un apareamiento. Por lo tanto M_a es un apareamiento maximal.
- (b) $M_b = (v_1v_4, v_2v_6, v_3v_5)$, claramente M_a es maximal, debido a que satura a todos los vértices de la gráfica G_b .
- (c) $M_c = (v_1v_2, v_5v_6)$, no es un apareamiento maximal, ya que podemos considerar el apareamiento $N_c = (v_1v_2, v_5v_6, v_3v_4) \supseteq M_c$, es decir, es posible "hacer más grande" el apareamiento M_c .
- 2. Decimos que M es un apareamiento máximo si para cada apareamiento N de G se tiene que $|N| \leq |M|$.

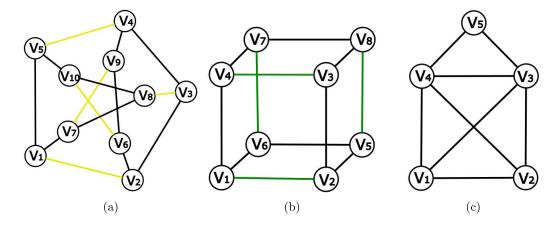
Ejemplo. Consideremos las siguientes gráficas y apareamientos:



(a) $M_a = (v_1v_7, v_2v_3, v_4v_5, v_6v_8, v_9v_{10})$, es evidente que cualquier otro apareamiento de G_a , digamos N_a , cumple que $|N_a| \leq |M_a|$, debido a que todos los vértices en G_a están M_a -saturados, por lo que no es posbile agregar otra arista sin que esta no comparta comparta extremos con alguna arista de M_a . Por lo tanto M_a es un apareamiento máximo.

- (b) $M_b = (v_1v_7, v_2v_6, v_3v_8, v_4v_9, v_5v_{10})$, siguiendo el mismo razonamiento que en (a), M_b es un apareamiento máximo. Además, observamos que la $G_a = G_b$, por lo que hemos encontrado dos apareamientos máximos distintos para la misma gráfica, y entonces un apareamiento máximo no es estrictamente único.
- (c) $M_c = (v_1v_7, v_2v_6, v_3v_4, v_9v_{10})$, podemos verficar que no existe un apareamiento tal que su cardinalidad sea mayor que $4 = |M_c|$ para la gráfica G_c . Por lo tanto M_3 es un apareamiento máximo.
- 3. Diremos que M es un apareamiento perfecto si todo vértice de G es M saturado.

Ejemplo. Consideremos las siguientes gráficas y apareamientos:



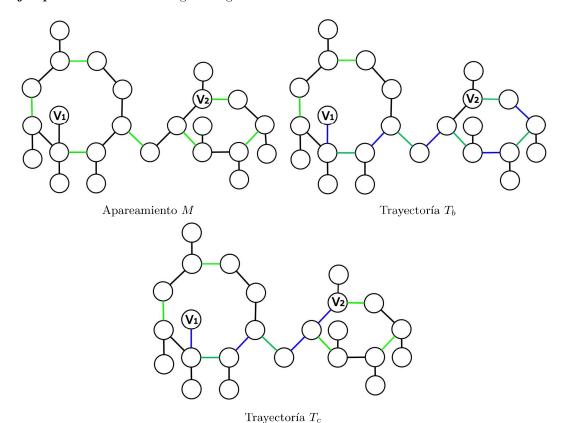
- (a) $M_a = (v_1v_2, v_3v_8, v_4v_5, v_7v_9, v_6v_{10})$, como todos los vértices de G_a están $M_a saturados$, M_a es un apareamiento perfecto.
- (b) $M_b = (v_1v_2, v_3v_4, v_6v_7, v_5v_8)$, como todos los vértices de G_b están $M_b saturados$, M_b es un apareamiento perfecto.
- (c) Es evidente que una gráfica con una cantidad impar de vértices no puede tener un apareamiento perfecto, por lo que no existe un apareamiento perfecto para G_c .

6.1.3. M-alternante y M-aumentante

Sean G una gráfica y M un apareamiento de G.

1. Una trayectoria $T=(x_0,\ldots,x_n)$ es M-alternante si y sólo si T alterna aristas de M y de $E(G)\setminus M$, i.e. $\forall i\in\{0,\ldots,n-2\}(x_ix_{i+1}\in M\iff x_{i+1}x_{i+2}\notin M)$.

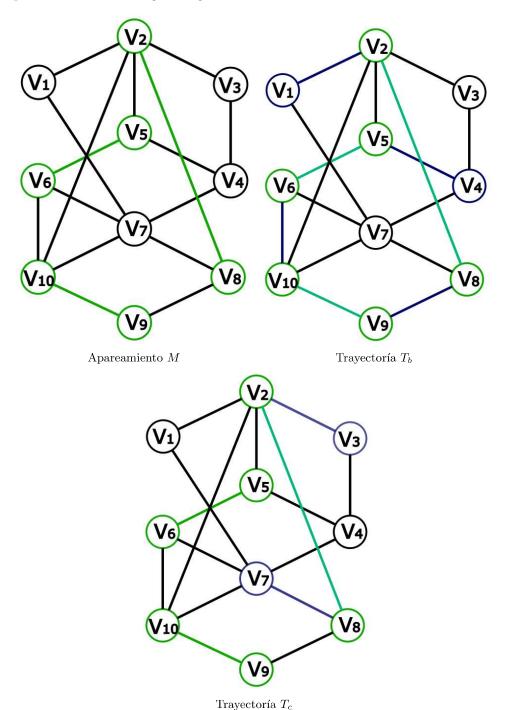
Ejemplo. Consideremos la siguiente gráfica G:



- (a) El apareamiento M son las aristas coloreadas de verde.
- (b) Sea T_b la v_1v_2 -trayectoría formada por las aristas coloreadas de azul fuerte (estas pertenecen a $E(G) \setminus M$) y las aristas coloreadas de cian (estas pertenecen a M). Como T_b alterna aristas de M y $E(G) \setminus M$, T_b es una trayectoría M-alternante.
- (c) Sea T_c la v_1v_2 -trayectoría formada por las aristas coloreadas de azul fuerte (estas pertenecen a $E(G) \setminus M$) y coloreada las aristas coloreadas de cian (estas pertenecen a M). Como dos aristas consecutivas de T_c pertenecen a $E(G) \setminus M$, T_c no es una trayectoría M-alternante.

2. Una trayectoria en G es M-aumentante si es M-alternante y además sus vértices inicial y final no son M-saturados.

Ejemplo. Consideremos la siguiente gráfica G:



- (a) El apareamiento M son las aristas coloreadas de verde y los vértices M-saturados también están coloreados de verde.
- (b) Sea T_b la v_1v_4 -trayectoría formada por las aristas coloreadas de azul fuerte (estas pertenecen a $E(G) \setminus M$) y las aristas coloreadas de cian (estas pertenecen a M). Como T_b alterna aristas de M y $E(G) \setminus M$, T_b es una trayectoría M-alternante. Además los vértices inicial y final de T_b no son M-saturados. Por lo tanto, T_b es una trayectoría M-aumentante.

(c) Sea T_c la v_3v_7 -trayectoría formada por las aristas coloreadas de azul fuerte (estas pertenecen a $E(G) \setminus M$) y las aristas coloreadas de cian (estas pertenecen a M). Como T_c alterna aristas de M y $E(G) \setminus M$, T_c es una trayectoría M-alternante. Además los vértices inicial y final de T_c no son M-saturados. Por lo tanto T_c es una trayectoría M-aumentante.

Observación. Si M es un apareamiento de G y T es una trayectoria M-alternante, entonces todo vértice interno de T es M-saturado por una arista en $E(T) \cap M$.

6.1.4. Diferencia simétrica

Sean A y B dos conjunto. La **diferencia simétrica de** A y B denotada por $A \triangle B$, se define como $(A \cup B) \setminus (A \cap B)$. Notamos que $(A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A)$.

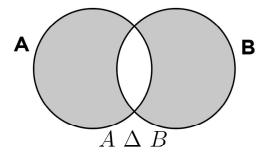
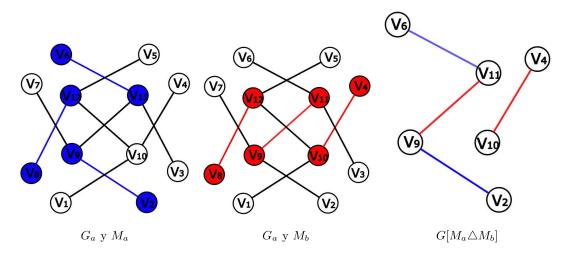


Diagrama de Venn para la diferencia simétrica

Sean G una gráfica, M y N dos apareamientos distintos de G. La gráfica $G[M\triangle N]$ es la gráfica inducida por el conjunto de aristas $M\triangle N$ en G.

Ejemplo. Consideremos las siguientes gráficas y apareamientos:



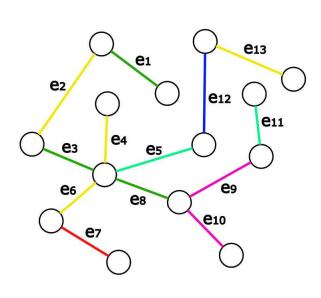
Observación. Si G un gráfica, M y M' dos apareamientos distintos de G. Toda trayectoria en $G[M \triangle M']$ es una trayectoria M – altenante y M' – altenante en G.

6.1.5. Coloración por aristas

- 1. Dada una gráfica G y un conjunto $K' \neq \emptyset$, una coloración por aristas en G es una función $C': E(G) \rightarrow K'$,
- 2. a los elementos del conjunto K' les llamaremos los **colores de** C',
- 3. si |K'| = m, podemos hacer referencia a C' como una m-coloración por aristas en G
- 4. y decimos que G es m-coloreable por aristas.
- 5. Si $k \in K'$, la clase cromática de k en G, es el conjunto

$$\eta'(k) = \{e \in E(G) : C(e) = k\}$$

Ejemplo. Consideremos la siguiente gráfica G y el conjunto $K' = \{amarillo, verde, aqua, azul, rojo\}$:



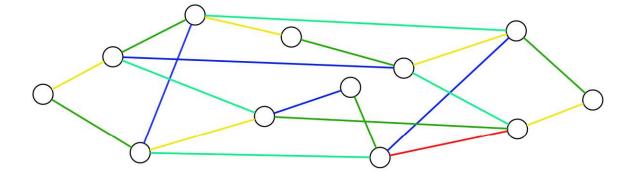
- a) La función $C': E(G) \to K$ dada por $C'[\{e_2, e_4, e_6, e_{13}\}] = amarillo,$ $C'[\{e_1, e_3, e_8\}] = verde, C'[\{e_5, e_{11}\}] = aqua, C'(e_{12}) = azul y C'(e_7) = rojo.$ Es una coloración de G.
- (b) Los colores de C son: amarillo, verde, aqua, azul y rojo.
- (c) Como |K'| = 5, decimos que C' es una 5-coloración por aristas de G.
- (d) G es 5-coloreable por aristas.
- (e) $\eta'(amarillo) = \{e_2, e_4, e_6, e_{13}\}$ $\eta'(verde) = \{e_1, e_3, e_8\}$ $\eta'(aqua) = \{e_5, e_{11}\}$ $\eta'(azul) = \{e_{12}\}$ $\eta'(rojo) = \{e_7\}$

6.1.6. Índice cromático

Sea G un gráfica y C' una coloración por aristas de G:

1. Si $\forall e_1, e_2 \in E(G)$ tales que e_1 y e_2 comparten un extremo, se cumple que $C'(e_1) \neq C'(e_2)$, diremos que C' es una coloración por aristas propia en G.

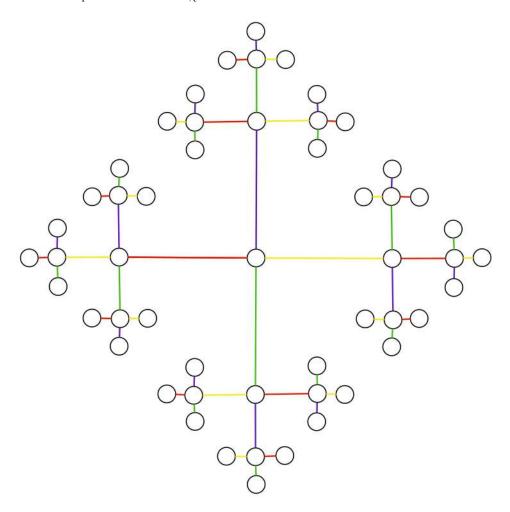
Ejemplo. La siguiente gráfica tiene una coloración por aristas propia:



60

- 2. El **índice cromático de** G, es: $\chi'(G) := min\{k \in \mathbb{N} : G \text{ tiene una } k$ —coloración por aristas propia $\}$ Es decir, es el menor número de colores necesarios para tener una coloración por aristas propia en G.
- 3. Si C' es una coloración por aristas propia en G con $\chi'(G)$ colores, diremos que C' es una χ' -coloración de G.

Ejemplo. Consideremos la siguiente gráfica G. Podemos verificar que $\chi'(G) = 4$, por lo que la siguiente coloración por aristas es una χ' -coloración de G:



6.2. Resultados importantes

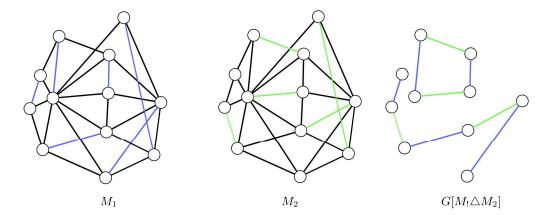
- 1. **Lema.** Si G es una gráfica, todo apareamiento perfecto es apareamiento máximo y todo apareamiento máximo es apareamiento maximal.
- 2. Lema. Sean G un gráfica y M un apareamiento de G. Si T es una trayectoria M-aumentante, entonces T tiene longitud impar. Bajo estas suposiciones, si T tiene longitud n, entonces

$$|E(T) \cap M| = \frac{(n-1)}{2}$$

- 3. Lema. Sean G una gráfica, M un apareamiento de G y P una trayectoria M-aumentante. Si $M' = M \triangle E(P)$, entonces M' es un apareamiento de G y además |M'| = |M| + 1
- 4. **Teorema de Berge.** Sean G una gráfica y M un apareamiento de G. M es máximo si y sólo si G no tiene trayectorias M-aumentantes.

5. **Lema.** Si G es una gráfica, M y M' dos apareamientos distintos de G, entonces toda componente conexa de $G[M \triangle M']$ es un ciclo de longitud par o una trayectoria.

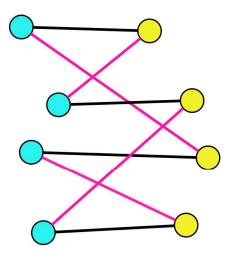
Ejemplo. Consideremos las siguiente gráficas, y apareamientos:



Observamos que una componente conexa de $G[M_1 \triangle M_2]$ es un ciclo de longitud par y la otra componente conexa es una trayectoria. Por lo tanto se cumple el lema 2.

6. Corolario. Toda gráfica bipartita regular no vacía contiene un apareamiento perfecto.

Ejemplo. Consideremos la siguiente gráfica G y apareamiento M:



Observamos que se cumple el corolario 6:

Ges una gráfica bipartita 2—regular no vacía y Mes un apareamiento perfecto para G.

- 7. **Teorema de Hall.** Sea G una gráfica bipartita con bipartición $\{U, W\}$ en conjuntos independientes. Existe un apareamiento de G que sature a todos los vértices de U si y sólo si $\forall S \subseteq U$ se satisface que $|N[S]| \geq |S|$.
- 8. **Teorema de Vizing.** Para toda gráfica G.

$$\Delta(G) \le \chi'(G) \le \Delta(G) + 1$$

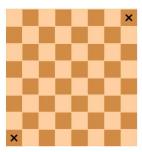
Es decir,
$$\chi' = \Delta(G)$$
 ó $\chi'(G) = \Delta(G) + 1$.

Nota. Por el teorema anterior, en estos contextos, dada una gráfica G, decimos que es de **clase** 1 si $\chi' = \Delta(G)$ o de **clase** 2 si $\chi' = \Delta(G) + 1$

62

6.3. Ejercicios

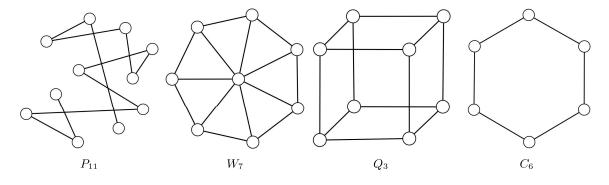
- 1. Demuestra que toda gráfica no vacia tiene un apareamiento. Además bajo estas condiciones, demuestra que toda gráfica tiene al menos un apareamiento maximal y al menos un apareamiento máximo.
- 2. Sea G una gráfica y M es un apareamiento de G Demuestra que $|M| \leq \frac{|V|}{2}$.
- 3. Sea G una gráfica bipartita con bipartición $\{U,W\}$ en conjuntos independientes. ¿Bajo que condiciones existe un apareamiento de G que sature a todos los vértices de U?
- 4. Demuestra que un árbol tiene, como máximo, un apareamiento perfecto.
- 5. ¿Es posible cubrir completamente utilizando únicamente rectángulos de dimensiones 1x2, un cuadrado de 8x8 al que se le han quitado dos de sus esquinas opuestas (1x1)?



Problema del tablero de ajedrez mutilado

- 6. ¿Cuál es el índice cromático de una gráfica que es un ciclo con n vértices?
- 7. Sea $n \in \mathbb{N}^+$. Encuentra la clase de las siguientes gráficas:
 - a) P_n (trayectoría de n vértices).
 - b) W_n (rueda con n vértices en el ciclo exterior).
 - c) Q_3 (cubo tridimensional).
 - d) C_n (ciclo de n vértices).

Ejemplos:



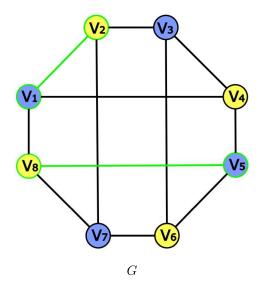
8. Demuestra que $\chi'(K_{n,m}) = max\{m,n\}$

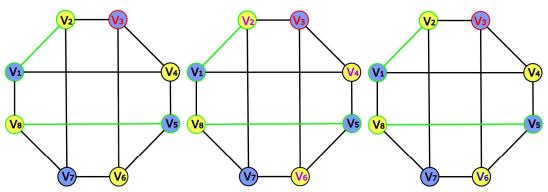
6.4.Algoritmo húngaro

El algoritmo húngaro encuentra un apareamiento óptimo dada una gráfica conexa con al menos un apareamiento. Requerimos una gráfica bipartita G, con bipartición en conjuntos independientes $\{U,V\}$, un apareamiento arbitrario de G, digamos M, y dos conjuntos R y S vacíos.

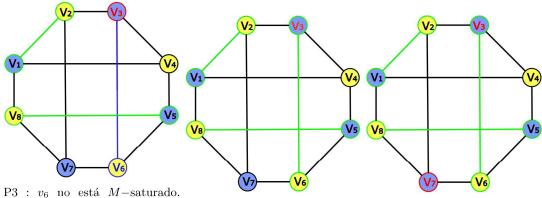
- 1. a) Si todo vértice de U es M-saturado, termina el algoritmo.
 - b) Si existe un vértice de U que no sea M-saturado, digamos x, consideramos $S = S \cup \{x\}$ y procedemos al siguiente paso.
- a) Si N(S) = R, por el teorema de Hall, no existe un apareamiento que sature a todos los vértices de U y termina el algoritmo.
 - b) Si $N(S) \neq R$, consideramos $y \in N(S) \setminus R$ y procedemos al siguiente paso.
- a) Si y es M-saturado, consideramos $yz \in M$, es decir y y z están M-apareados. Hacemos $S = S \cup \{z\}$ y $R = R \cup \{y\}$ y regresamos al paso 2.
 - b) Si y no es M-saturado, entonces existe una xy-trayectoria M-aumentante, digamos T. Hacemos $M = M \triangle E(T)$ y regresamos al paso 1.

Ejemplo. Consideremos la siguiente gráfica G, con bipartición $\{U,V\}$, donde $U=\{v_1,v_3,v_5,v_7\}$ y $V = \{v_2, v_4, v_6, v_8\}$, y el apareamiento $M = \{v_1v_2, v_5v_8\}$. Apliquemos el algoritmo húngaro.



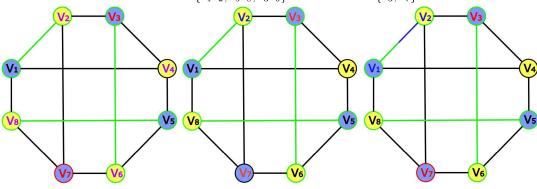


P2 : Consideramos $\mathsf{P1}: v_3 \in U$ no está $M\mathrm{-saturado.}\ \mathsf{P2}: \mathsf{Como}$ Hacemos $S = \emptyset \cup \{v_3\} = \{v_3\}$ $N(S) = \{v_2, v_4, v_6\} \neq \emptyset = R$



Consideramos $T = (v_3, v_6)$ P3 : Hacemos $M = M \triangle E(T)$ que es una v_3v_6 -trayectoria = $\{v_1v_2, v_5v_8\}\triangle\{v_3v_6\}$ M-aumentante. $= \{v_1v_2, v_5v_8, v_3v_6\}$

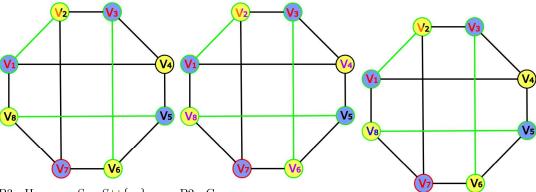
 $P1: v_7 \in U$ no está M-saturado. Hacemos $S = \{v_3\} \cup \{v_7\}$ $= \{v_3, v_7\}$



P2:Como $N(S) = \{v_2, v_4, v_6, v_8\} \neq \emptyset = R \quad v_2 \in N(S) \setminus R = \{v_2, v_4, v_6, v_8\}$

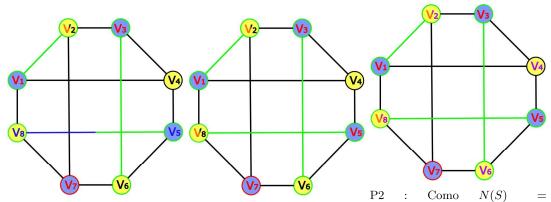
P2: Consideramos

P3 : v_2 está M-saturado por

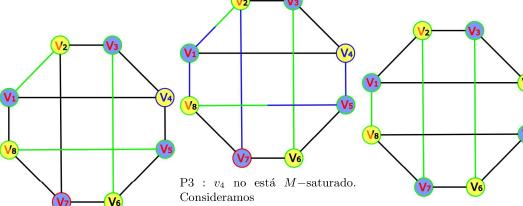


P3: Hacemos $S = S \cup \{v_1\}$ $= \{v_3, v_7, v_1\} \text{ y } R = \emptyset \cup \{v_2\}$ $= \{v_2\}$

P2:Como $N(S) = \{v_2, v_4, v_6, v_8\} \neq \{v_2\} = \text{P2}$: Consideramos $v_8 \in N(S) \setminus T = \{v_4, v_6, v_8\}$

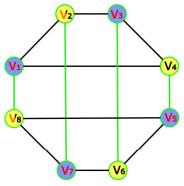


P3 : v_8 está M-saturado por P3 : Hacemos $S = \{v_3, v_7, v_1, v_5\}$ $\{v_2, v_4, v_6, v_8\}$ v_8v_5 . $y R = \{v_2, v_8\}$ $\neq \{v_2, v_8\} = R$



P2 : Consideramos $v_4 \in N(S) \setminus T = \{v_4, v_6\}$

 $T=(v_7,v_2,v_1,v_8,v_5,v_4)$ P3 : Hacemos $M=M\triangle E(T)=$ que es una v_7v_4- trayectoria $\{v_1v_2,v_5v_8,v_3v_6\}\triangle \{v_7v_2,v_2v_1,v_1v_8,v_8v_5,v_5v_4\}$ M-aumentante. $=\{v_1v_8,v_7v_2,v_3v_6,v_5v_4\}$



P1 : Como todo vértice de U es M-saturado, hemos concluido el algoritmo.