Variable Compleja I Unidad 2: Tarea en equipo

Estos son los enunciados de la tarea en equipos. Deberán entregarla de acuerdo a todas las instrucciones indicadas en Moodle.

- 1. Demuestra las siguientes afirmaciones.
 - a) Sea U una región de \mathbb{C} , definimos $U^* = \{z \in \mathbb{C} \mid \overline{z} \in U\}$. Si $f: U \to \mathbb{C}$ es analítica en U, demuestra que $f^*: U^* \to \mathbb{C}$ dada por $f^*(z) = \overline{f(\overline{z})}$ es analítica en U^* .
 - b) Demuestra que f satisface las ecuaciones de Cauchy-Riemann si y sólo si

 $\frac{\partial f}{\partial \overline{z}} = 0.$

- c) La función $f(z) = e^{\overline{z}}$ no es analítica en \mathbb{C} .
- 2. Demuestra que $|e^{z^2}| \leq e^{|z|^2}.$ Da un ejemplo de un z para el cual la desigualdad sea estricta.
- 3. Para R > 0 denotamos

$$\mathbb{D}_R = \{ z \in \mathbb{C} \mid |z| < R \}$$

Sean $f,g:\mathbb{D}_R\to\mathbb{C}$ funciones analíticas en \mathbb{D}_R tal que nunca se anulan en \mathbb{D}_R . Demuestra que si para todo $z\in\mathbb{D}_R$ se cumple que

$$|f(z)| = |g(z)|$$

entonces existe $\lambda \in \mathbb{C}$ con $|\lambda| = 1$ tal que $f = \lambda g$.

4. Calcula lo siguiente:

- a) El dominio de analicidad y la derivada de $f(z) = 3z^2 e^{i2z} + i\text{Log}(z)$,
- b) Las soluciones a la ecuación $(1-i)e^z = 1+i$,
- c) La parte real y la parte imaginaria de $z = \cos(\frac{\pi}{2} + i)$,
- d) Usando la rama principal del logaritmo, calcula

$$\left[\frac{e}{2}\left(-1-i\sqrt{3}\right)\right]^{3\pi i}$$

5. Sean $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\},\ \theta\in[0,2\pi]\ \mathrm{y}\ z_0\in\mathbb{D}.$ Demuestra que la restricción a \mathbb{D} de la transformación de Möbius

$$T(z) = e^{i\theta} \frac{z - z_0}{1 - \overline{z_0}z}$$

es una biyección de \mathbb{D} sobre sí mismo, demostrando primero que $T(\mathbb{D}) = \mathbb{D}$.