Resultados de búsqueda: definiciones recursivas

88 resultados encontrados

  • Cuestionario

    Mini-cuestionario: Fórmulas recursivas - [Detalles]

    Correspondiente a la Unidad III "Números naturales y cálculo combinatorio" del curso de Algebra Superior I, este cuestionario está diseñado para que el alumno calcule y use fórmulas recursivas, como el binomio de Newton.

  • Blog

    Otras definiciones recursivas en los naturales (exponenciación y factorial) - [Detalles]

    Definimos el factorial y la exponenciación en los números naturales asimismo probamos unas leyes de los exponentes.

  • Blog

    Problemas de otras definiciones recursivas - [Detalles]

    Descripción pendiente

  • Blog

    Principio de recursión en los números naturales - [Detalles]

    En esta entrada revisamos las funciones recursivas, su definición y ejemplos.

  • Video

    Recursividad, recursión en JAVA - [Detalles]

    Recursión en JAVA - Cómo funciona y cómo se implementan/declaran las funciones recursivas en JAVA

  • Video

    Uso de interfaces, Definiciones formales de lista - [Detalles]

    Definiciones formales de lista - Recursividad estructural, definiciones preliminares

  • Blog

    Definiciones - Libro I de los Elementos de Euclides - [Detalles]

    Aquí se encuentran las 23 definiciones del libro I de los elementos de Euclides. Definiciones indispensables para entender los postulados y proposiciones del libro.

  • Video

    Dependencia e independencia lineal - [Detalles]

    Damos las definiciones formales de combinación lineal, dependencia lineal e independencia lineal. También usamos ejemplos para explicar cuando un conjunto de vectores cumple con alguna de estas definiciones 

  • Video

    Los Elementos de Euclides: Definiciones - [Detalles]

    En este video cubrimos las Definiciones del libro I de Los Elementos de Euclides.

  • Video

    Funciones de orden superior, Definiciones - [Detalles]

    Funciones de orden superior - Definiciones y explicación previa a la introducción de este tipo de funciones en JAVA mediante sus interfaces funcionales por sus limitantes

  • Interactivo

    Cuadriláteros cíclicos y ángulos en la circunferencia - [Detalles]

    Interactivo relacionado al tema: "Circunferencia y Cuadriláteros cíclicos". Aquí el estudiante podrá navegar por apartados donde se encuentran las definiciones de un cuadrilátero cíclico y de los tipos de ángulos en una circunferencia: central, inscrito, semi-inscrito y ex-inscrito. También contiene demostraciones de teoremas y proposiciones relacionadas al tema como lo son el teorema de Ptolomeo y el teorema de la línea de Simson con sus correspondientes recíprocos. Todas las demostraciones y definiciones son apoyadas de figuras interactivas.

  • Sitio web

    Críticas a la teoría euclidea y sus consecuencias - [Detalles]

    Aquí se invita al alumno a reflexionar sobre algunas de las definiciones de Euclides y cómo estas definiciones fueron replanteadas entre otros por David Hilbert.

  • Video

    Cuantificadores - [Detalles]

    Damos las definiciones de los cuantificadores: para todo, existe y existe un único. Mediante ejemplos mostramos su uso en la lógica proposicional.

  • Video

    Diferencia y diferencia simétrica de conjuntos - [Detalles]

    Vemos las definiciones diferencia y diferencia simétrica de conjuntos, además damos algunos ejemplos

  • Video

    ¿Qué es la matemática? - [Detalles]

    Damos varias definiciones de matemáticas y cómo podemos hacer más sencilla su comprensión

  • Lección

    Introducción, nociones comunes y postulados de Euclides - [Detalles]

    Damos la introducción al curso. Para ello hablamos de las definiciones elementales en geometría. Planteamos los postulados de Euclides, nociones comunes y algunas de sus consecuencias.

  • Lección

    Medianas, bisectrices, mediatrices y alturas - [Detalles]

    Damos las definiciones de varios puntos y rectas notables del triángulo y demostramos algunas de sus propiedades

  • Lección

    Triángulos pedales - [Detalles]

    Damos las definiciones de triángulo mediano, triángulo órtico y triángulo pedal y demostramos algunas de sus propiedades

  • Video

    Definiciones elementales: Ecuación diferencial ordinaria, solución, y orden de una ecuación - [Detalles]

    Definimos una ecuación diferencial ordinaria, solución y el orden de una ecuación.

  • Video

    Definiciones elementales: Problema de condición inicial, ecuaciones lineales y no lineales - [Detalles]

    Definimos el problema de condición inicial (o valor inicial) y a las ecuaciones lineales y no lineales.

  • Video

    Introducción a sistemas de ecuaciones diferenciales de primer orden (Parte 1) - [Detalles]

    Damos las primeras definiciones acerca de sistemas de ecuaciones de primer orden y mostramos dos ejemplos de problemas donde los sistemas aparecen.

  • Blog

    Supremo e ínfimo - [Detalles]

    Estudio de las definiciones para ínfimo y supremo de un conjunto, resultados relacionados y ejemplos.

  • Blog

    Definiciones - [Detalles]

    Introducción al curso de Geometría Moderna I basado en el temario oficial de la Facultad de Ciencias de la UNAM.

  • Blog

    Funciones hiperbolicas - [Detalles]

    Introducción a las definiciones de las funciones hiperbólicas

  • Blog

    Variables aleatorias - [Detalles]

    Desarrollamos el concepto de variable aleatoria así como definiciones equivalentes a la primer propuesta, asimismo se presentan unos ejemplos básicos de lo que representa una variable aleatoria.

  • Cuestionario

    Mini-cuestionario: Sistemas de ecuaciones lineales - [Detalles]

    Mini-cuestionario para verificar el entendimiento de las definiciones relacionadas con sistemas de ecuaciones lineales

  • Diapositivas

    Diapositivas sobre conjuntos - [Detalles]

    Introducimos la idea de conjuntos, las primeras definiciones como conjuntos, subconjuntos, elemento; se muestran ejemplos de conjuntoas más populares y unas primeras proposiciones sencillas de demostrar.

  • Diapositivas

    Diapositivas sobre operaciones de conjuntos - [Detalles]

    Definimos las operaciones de conjuntos básicas tales como la unión, la intersección, la diferencia, la diferencia simétrica, el complemento y en base a ejemplos incentivamos algunas propiedades de estas operaciones, no se demuestran de manera formal pues se busca que el lector se apropié primero de las definiciones.

  • Diapositivas

    Diapostivas sobre relaciones de equivalencia - [Detalles]

    Partimos de una definición de las diapositivas anteriores y de las definiicones de relaciones reflexivas, simétricas y transitivas, la relación que cumpla con estas 3 se llama una relación de equivalencia y de esta nueva definición se desprende las definiciones de clase de equivalencia y particiones, estas ideas se ilustran con más ejemplos.

  • Diapositivas

    Diapositivas del plano cartesiano: coordenadas y lugares geométricos - [Detalles]

    Damos inicio al curso dando las definiciones que nos acompañarán durante todo el curso de geometría analítica, la definición de lugar geométrico nos acompañará no solo este semestre sino en todo el curso completo de geometría analítica, damos ejemplos y ejercicios sencillos en el plano cartesiano el cual será el lugar de trabajo más recurrido en este primer curso.

  • Cuestionario

    Cuestionario de plano cartesiano y espacios geométricos - [Detalles]

    Ponemos en práctica las definiciones del tema de espacios geométricos dentro del plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario de espacio cartesiano: coordenadas y lugares geométricos - [Detalles]

    Ponemos en práctica las definiciones del tema de espacios geométricos dentro del espacio cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Guía de estudio

    Guía de estudio sobre el plano y el espacio cartesiano - [Detalles]

    Proponemos una lista de ejercicios para poner en práctica los temas principales de la primera unidad de este curso que es una introducción con las definiciones más importantes que se llevarán a cabo, hay ejercicios teóricos tanto ejercicios prácticos.

  • Diapositivas

    Diapositivas sobre dependencia e independencia lineal - [Detalles]

    Seguimos con el estudio de los espacios vectoriales pero ahora dando una definición que es base en el desarrollo de este tema que son las combinaciones lineales y si un conjunto de vectores con un conjunto linealmente independiente, se proporcionan varias definiciones equivalentes de esta última definición.

  • Cuestionario

    Cuestionario sobre dependencia e independencia lineal - [Detalles]

    Ponemos en práctica las definiciones que se revisaron respecto a la independencia lineal son una serie de afirmaciones las cuáles nos muestran si la definición fue comprendida o no, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Diapositivas

    Diapositivas sobre bases de espacios vectoriales - [Detalles]

    A partir de las definiciones pasadas creamos una nueva que es la de una base la cual debe cumplir con ser un conjunto generador del espacio y ser linealmente independiente, se muestran algunos ejemplos de conjuntos que son bases en sus respectivos espacios y entre estos los ejemplos de las bases canónicas.

  • Cuestionario

    Cuestionario sobre ecuaciones de la recta en el plano - [Detalles]

    Ponemos en práctica las primeras definiciones sobre el tema de las ecuaciones de la recta en el plano cartesiano, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario sobre cónicas - [Detalles]

    Ponemos en práctica las primeras definiciones que tenemos de cónicas y evaluar si el alumno aprendió a diferenciarlas viendo su ecuación general, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Cuestionario

    Cuestionario sobre lugar geométricos de las cónicas - [Detalles]

    Ponemos en práctica las definiciones de cada una de las cónicas como lugares geométricos, al resolver el cuestionario lanza la calificación para que el alumno pueda ver que áreas necesita repasar.

  • Diapositivas

    Diapositivas sobre las ecuaciones canónicas de las cónicas - [Detalles]

    Dadas las definiciones anteriores de las cónicas vistas como ligares geométricos y con sus respectivos elementos es posible crear una fórmula llamada cacócia para cada una de estas figuras, en con ayuda de estas ecuaciones canónicas es más fácil el poder observar las diferencias entre una y otra, es decir, se nos facilita la tarea de distinguir distintas canónicas.

  • Video

    Orden en los números enteros - [Detalles]

    Hablamos sobre algunas propiedades de los números naturales, vemos que poseen un orden. Lo nos lleva a dar las definiciones formales de "menos que" y "menor igual". Demostramos algunas proposiciones y propiedades que surgen de considerar un orden en los números naturales. 

  • Cuestionario

    Mini-cuestionario: Espacios vectoriales - [Detalles]

    Mini-cuestionario para verificar el entendimiento de las definiciones básicas de espacios vectoriales.

  • Cuestionario

    Mini-cuestionario: Subespacios vectoriales - [Detalles]

    Mini-cuestionario para verificar el entendimiento de las definiciones básicas de subespacios vectoriales.

  • Cuestionario

    Mini-cuestionario: Formas bilineales - [Detalles]

    Mini-cuestionario para verificar el entendimiento de las definiciones básicas de formas bilineales.

  • Cuestionario

    Mini-cuestionario: Bases ortogonales y ortonormales - [Detalles]

    Mini-cuestionario para verificar el entendimiento de las definiciones de bases ortogonales y ortonormales.

  • Cuestionario

    Mini-cuestionario: Transformaciones multilineales - [Detalles]

    Mini-cuestionario para verificar el entendimiento de las definiciones básicas de transformaciones multilineales.

  • Blog

    Introducción al curso y números naturales - [Detalles]

    Comenzamos el curso retomando las principales definiciones del conjunto de los números naturales enseñados en el curso de álgebra superior II asimismo se enseñan los axiomas de Peano.

  • Blog

    Problemas de congruencias y $Z_n$ - [Detalles]

    Resolvemos ejercicios que ocupan las definiciones de congruencia, anillo de módulo n para encontras sus unidades e inversos multiplicativos en caso de que los haya.

  • Blog

    Inmersión de R en R[x], grado y evaluación - [Detalles]

    Damos las definiciones principales y más escenciales del tema de polinomios como los son: raíz, grado, potencia de un polinomio; asimismo demostramos las propiedades más fundamentales de estos nuevos conceptos.

  • Video

    El soporte de una permutación - [Detalles]

    Definimos el concepto de fijar y mover elementos para una permutación. También definimos el soporte de una permutación. Finalmente damos algunos ejemplos que ilustran las definiciones.

  • Cuestionario

    10. Conexidad y compacidad en un espacio métrico - [Detalles]

    Volvamos a checar un poco las definiciones de un conjunto conexo y compacto mediante algunos ejemplos.

  • Cuestionario

    12. Funciones de variable compleja. Definiciones y preliminares. - [Detalles]

    Chequemos un poquito de la definición de función y de sus partes real e imaginaria.

  • Blog

    12. Funciones de variable compleja. Definiciones y preliminares. - [Detalles]

    Comenzamos con el concepto de función, un objeto fundamental del estudio de la Variable Compleja, nos apoyaremos en nuestro conocimiento sobre funciones de $\mathbb{R}^2$ en $\mathbb{R}^2$ y notaremos cuales son sus diferencias y que propiedades se tienen en las funciones que toman valores en $\mathbb{C}$.

  • Blog

    27. Preliminares de series de números complejos - [Detalles]

    Empezamos la unidad dando las definiciones básicas de series de números complejos y resultados sobre su convergencia o divergencia.

  • Blog

    32. Trayectorias, curvas y contornos en el plano complejo $\mathbb{C}$ - [Detalles]

    Empezamos la unidad 4, en esta primera entrada, como preliminares, veremos algunas definiciones tales como la de una función híbrida, trayectoria o curva y algunas más, que mas adelante nos permitirán dar una definición de integral compleja.

  • Blog

    Álgebra Moderna I: Misma Estructura Cíclica, Permutación Conjugada y Polinomio de Vandermonde. - [Detalles]

    En este texto, se explora la unicidad de la factorización completa de las permutaciones y se analizan los ciclos que aparecen en esta factorización. La cantidad y longitud de los ciclos permanecen constantes independientemente de la factorización elegida. Esto conduce a las definiciones clave de estructura cíclica y permutación conjugada. Además, se menciona que las permutaciones pueden descomponerse en intercambios de elementos de dos en dos, lo que revela que toda permutación se puede expresar como un producto de una cantidad par o impar de intercambios.

  • Cuestionario

    43. Clasificación de ceros y singularidades de una función analítica - [Detalles]

    Realizaremos unos ejercicios para aterrizar las definiciones de singularidad de una función, si es removible, polo o esencial con funciones muy bien conocidas.

  • Video

    Ejercicio Subsucesiones convergentes de sucesión de Cauchy - [Detalles]

    ¿Puede una sucesión de Cauchy garantizar la existencia de una subsucesión convergente? En este video, abordaremos este enigma matemático con meticulosidad y rigor, llevándote a través de una demostración exhaustiva que desentrañará este misterio. Utilizando definiciones precisas, argumentos lógicos y visualizaciones intuitivas, te guiaremos por el camino que une a las sucesiones de Cauchy con la convergencia.

  • Blog

    Repaso de formas bilineales y formas cuadráticas - [Detalles]

    en esta entrada daremos un repaso de los conceptos de formas bilineales y formas cuadráticas, y probaremos algunas propiedades que previamente no fueron demostradas. También nos familiarizaremos con algunos tipos especiales de formas bilineales e intentaremos extender las definiciones ya dadas, esta vez para espacios vectoriales cuyo campo sea $\mathbb{C}$

  • Blog

    Tipos de enunciados matemáticos - [Detalles]

    Introducción En esta entrada platicamos de varios tipos de enunciados con los que te vas a encontrar frecuentemente en trayectoria matemática a nivel universitario. Para entender correctamente las definiciones siguientes, es muy importante que ya estés familiarizado con el concepto de proposición matemática que tratamos con anterioridad. Axiomas En las matemáticas, los axiomas son enunciados […]

  • Video

    Funciones, Funciones en JAVA - [Detalles]

    Funciones en JAVA - Definiciones importantes de funciones, parámetros,, características, sintaxis y algunas convenciones universales.

  • Video

    Excepciones - [Detalles]

    Excepciones - Definiciones preliminares. Cómo identificar los errores de ejecución y analizar el origen.

  • Video

    Entrada y Salida estructurada, Definición de flujo - [Detalles]

    Definición de flujo - Explicación del concepto, definiciones generales y cómo apliciar filtros

  • Video

    Enchufes, Introducción a los enchufes - [Detalles]

    Introducción a los enchufes - Definiciones, conceptos y función de los enchufes. Terminología importante así como los protocolos para enviar información.

  • Video

    Enchufes - [Detalles]

    Enchufes - Cómo trabajar con los enchufes. Definiciones y explicación de cómo trabajar con ellos.

  • Blog

    Principio de inducción matemática - [Detalles]

    En este apartado se abordan los temas de inducción matemática, inducción fuerte y recursividad, con demostraciones de teoremas y proposiciones, junto con definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para ilustrar los conceptos tratados y algunos ejercicios para que el alumno ponga en práctica lo aprendido.

  • Blog

    Algoritmo de la división - [Detalles]

    En este apartado se aborda el concepto de divisibilidad y el teorema del algoritmo de la división, con demostraciones, definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para ilustrar los conceptos tratados y algunos ejercicios para que el alumno ponga en práctica lo aprendido.

  • Blog

    Números primos y compuestos - [Detalles]

    En este apartado se abordan los conceptos de número primo y número compuesto, con demostraciones, definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para identificar si un número es primo o compuesto y algunos ejercicios para que el alumno ponga en práctica lo aprendido.

  • Blog

    El algoritmo de Euclides y el máximo común divisor - [Detalles]

    En este apartado se aborda el concepto de máximo común divisor (MCD) y se explora el algoritmo de Euclides, el cual sirve para calcular el mcd, incluyendo la versión extendida del algoritmo y el lema de Bézout. Todo acompañado de demostraciones, definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para ilustrar los conceptos tratados, y algunos ejercicios para que el alumno ponga en práctica lo aprendido.

  • Blog

    Ecuaciones diofantinas lineales - [Detalles]

    En este apartado se aborda el tema de ecuaciones diofantinas lineales y se emplea el algoritmo de Euclides para resolverlas, acompañado de demostraciones, definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para resolver dos casos particulares de ecuaciones diofantinas lineales y se incluyen algunos ejercicios para que el alumno ponga en práctica lo aprendido.

  • Blog

    Teorema fundamental de la aritmética - [Detalles]

    En este apartado se demuestra el teorema fundamental de la aritmética y con esto se definen al mínimo común múltiplo (MCM) y a la descomposición canónica, esto acompañado de demostraciones de lemas, corolarios y otros teoremas, así como de otras definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para ilustrar los conceptos tratados y se incluyen algunos ejercicios para que el alumno ponga en práctica lo aprendido.

  • Blog

    Número y suma de divisores - [Detalles]

    En este apartado se abordan las funciones sigma y tau, las cuales están relacionadas con los divisores de un número entero, esto acompañado de demostraciones de proposiciones y corolarios, así como de definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para calcular la suma y el número de divisores de un entero, y se incluyen algunos ejercicios para que el alumno ponga en práctica lo aprendido.

  • Blog

    Números perfectos, primos de Mersenne y primos de Fermat - [Detalles]

    En este apartado se presentan tres clases de números enteros: los números perfectos, los números primos de Mersenne y los números primos de Fermat, esto acompañado de demostraciones de teoremas y proposiciones, así como de definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para verificar si un número pertenece a alguna de las tres clases de números previamente mencionadas, y se incluyen algunos ejercicios para que el alumno ponga en práctica lo aprendido.

  • Blog

    Función phi de Euler - [Detalles]

    En este apartado se aborda la función phi (o "d") de Euler, la cual calcula el número de primos relativos menores a un número entero n, acompañado de demostraciones de teoremas y proposiciones, así como de definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para calcular la función phi de euler, y se incluyen algunos ejercicios para que el alumno ponga en práctica lo aprendido.

  • Blog

    Función mu y fórmula de inversión de Möbius - [Detalles]

    En este apartado se aborda la función mu (o "W") de Möbius, y la fórmula de inversión de Möbius, acompañado de demostraciones de teoremas y proposiciones, así como de definiciones y problemas resueltos. Este tema corresponde a la Unidad 1 "Divisibilidad", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para calcular la función mu de Möbius y para hacer la inversión de Möbius, y se incluyen algunos ejercicios para que el alumno ponga en práctica lo aprendido.

  • Blog

    Recordatorio de clases de equivalencia - [Detalles]

    En este apartado se presenta un repaso del tema "clases de equivalencia", que abarca los conceptos de relaciones de equivalencia, particiones y particiones inducidas. Contiene demostraciones de teoremas y proposiciones, definiciones y problemas resueltos. Este es un tema extra correspondiente a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para ilustrar los conceptos tratados y algunos ejercicios para que el alumno ponga en práctica lo aprendido.

  • Blog

    Sistemas completos de residuos - [Detalles]

    En este apartado se abordan los temas de sistemas representantes y sistemas completos de residuos, acompañado de demostraciones de teoremas y proposiciones, así como de definiciones y problemas resueltos. Este tema corresponde a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para verificar si un conjunto es un sistema completo de residuos con respecto a n, e incluye algunos ejercicios para que el alumno ponga en práctica lo aprendido.

  • Blog

    Congruencias y propiedades básicas - [Detalles]

    En este apartado se aborda el tema de relación de congruencia con sus propiedades y operaciones, acompañado de demostraciones de teoremas y proposiciones, así como de definiciones y problemas resueltos. Este tema corresponde a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para ilustrar los conceptos tratados, e incluye algunos ejercicios para que el alumno ponga en práctica lo aprendido.

  • Blog

    Teoremas de Euler, de Fermat y de Wilson - [Detalles]

    En este apartado se demuestran tres teoremas importantes relacionados con los números primos: el teorema de Euler, el teorema de Fermat y el teorema de Wilson, todo acompañado de demostraciones de lemas, corolarios y otros teoremas, así como de definiciones y problemas resueltos. Este tema corresponde a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código en Python donde se implementa el teorema de Euler y el teorema de Wilson, e incluye algunos ejercicios para que el alumno ponga en práctica lo aprendido.

  • Blog

    Resolución de congruencias lineales - [Detalles]

    En este apartado se aborda el tema de congruencias lineales y su relación con las ecuaciones diofantinas lineales, contiene demostraciones de teoremas y proposiciones, junto con definiciones y problemas resueltos. Este tema corresponde a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para resolver congruencias lineales y algunos ejercicios para que el alumno ponga en práctica lo aprendido.

  • Blog

    Teorema chino del residuo - [Detalles]

    En este apartado se demuestra el teorema chino del residuo, el cual sirve para resolver sistemas de congruencias lineales, todo acompañado de demostraciones de lemas, corolarios y otros teoremas, así como de definiciones y problemas resueltos. Este tema corresponde a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código en Python implementando el teorema para resolver sistemas de congruencias lineales e incluye algunos ejercicios para que el alumno ponga en práctica lo aprendido.

  • Blog

    Sistemas de congruencias lineales (parte 1) - [Detalles]

    En este apartado se aborda el tema de sistemas de congruencias lineales de una variable (en la parte 2 la generalización) cuando los módulos no son necesariamente primos relativos (condición necesaria para el teorema chino del residuo), contiene demostraciones de teoremas y proposiciones, junto con definiciones y problemas resueltos. Este tema corresponde a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para resolver sistemas de congruencias lineales de una variable y algunos ejercicios para que el alumno ponga en práctica lo aprendido.

  • Blog

    Sistemas de congruencias lineales (parte 2) - [Detalles]

    En este apartado se aborda el tema de sistemas de congruencias lineales de 2 o más variables (de una variable en la parte 1) cuando los módulos no son necesariamente primos relativos (condición necesaria para el teorema chino del residuo), contiene demostraciones de teoremas y proposiciones, junto con definiciones y problemas resueltos. Este tema corresponde a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para resolver sistemas de congruencias lineales de n variables y algunos ejercicios para que el alumno ponga en práctica lo aprendido.

  • Blog

    Introducción a congruencias cuadráticas - [Detalles]

    En este apartado se introduce el tema de congruencias cuadráticas cuando el módulo es un número primo o un número compuesto, contiene demostraciones de teoremas y proposiciones, junto con definiciones y problemas resueltos. Este tema corresponde a la Unidad 2 "Congruencias", del curso de Teoría de los Números I. Además, se presenta un código implementado en Python para resolver una congruencia cuadrática en módulos primos y algunos ejercicios para que el alumno ponga en práctica lo aprendido.

  • Interactivo

    Introducción a la Geometría Moderna - [Detalles]

    Interactivo introductorio al curso "Geometría Moderna I". Aquí el alumno podrá navegar a distintos apartados donde se encuentran definiciones con figuras interactivas, las cuales se consideran necesarias para iniciar con el curso, tales como: recta, segmento, rayo, ángulo, bisectriz,..., triángulos, circunferencia.

  • Práctica

    Vectores y Matrices (Primera Parte) - Python - [Detalles]

    Práctica en Python relacionada a la Unidad 3 "Espacios vectoriales". Se proporcionan las definiciones y el código de las operaciones básicas de un vector, además de operaciones como el producto punto, producto cruz, la norma, y el triple producto punto.

  • Práctica

    Vectores y Matrices (Segunda Parte) - Python - [Detalles]

    Práctica en Python relacionada a la Unidad 3 "Espacios Vectoriales". Se incluyen las definiciones y el código para realizar operaciones básicas con matrices, así como el cálculo de su inversa, determinante y su aplicación en la resolución de sistemas de ecuaciones.

  • Interactivo

    Algunas propiedades de las circunferencias - [Detalles]

    Este interactivo está relacionado a los temas "Potencia de un punto" y "Segmentos dirigidos". Aquí el estudiante podrá navegar a través de apartados que contienen las definiciones de qué es un segmento dirigido, potencia de un punto, eje radical y circunferencias coaxiales. Además se incluyen las demostraciones de algunos resultados relacionados que son: el teorema de la Fórmula de Euler, teorema de Pascal y el teorema de Brianchon.